中国干湿格局对未来高排放情景下气候变化响应的敏感性
Sensitivity of arid/humid patterns in China to future climate change under high emission scenario
查看参考文献71篇
文摘
|
气候变化影响下干湿状况的区域分异格局如何变化是一个重要科学问题。基于参与耦合模式比较计划第五阶段(CMIP5)的5个全球气候模式(GCM),预估了RCP 8.5情景下未来百年中国干湿区面积的变化趋势,分析了干湿格局变化的敏感地区以及对气候变化响应的敏感性。结果表明:未来干湿格局变化以湿润区显著减少、干湿过渡区显著扩张为主要特征,特别是半湿润区面积在远期(2070-2099年)相对基准期(1981-2010年)增加了28.69%。升温2 ℃~ 4 ℃条件下,全国发生干湿类型转变的面积从10.17%增加至13.72%,尤其在淮河流域南部,这里主要受未来潜在蒸散增加的影响,湿润区向南明显退缩从而转变为半湿润区。总体上,随着未来升温加剧,中国干湿格局对气候变化响应的敏感性将可能增强。 |
其他语种文摘
|
Changes in the regional differentiation patterns of moisture conditions under the impact of climate change are an important scientific question. Based on the five global climate models (GCMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), this paper projected the trend in the area of arid/humid climate regions in China for the next hundred years, and analysed the sensitive regions of arid/humid patterns change and its sensitivity of responses to climate change. Results show that the future arid/humid patterns change would be characterized by a significant decrease in the humid region and a significant expansion in the arid/humid transition zones. In particular, the area of sub-humid region would increase by 28.69% in the long term (2070-2099) relative to the baseline period (1981-2010). Under 2 ℃ and 4 ℃ warming, the area of shifts between arid/humid climate regions was projected to increase from 10.17% to 13.72%. Particularly in the south of the Huaihe River basin, which was mainly affected by the future increase in reference evapotranspiration, the humid region would retreat southward and shift to the sub- humid region. In general, the sensitivity of responses of arid/humid patterns to climate change in China would intensify with the acceleration of global warming. |
来源
|
地理学报
,2019,74(5):857-874 【核心库】
|
DOI
|
10.11821/dlxb201905002
|
关键词
|
干湿格局
;
气候变化
;
敏感性
;
干湿指数
;
中国
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100049
3.
河南省发展和改革委员会, 郑州, 450018
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
大气科学(气象学) |
基金
|
国家重点研发计划
;
国家自然科学基金项目
;
国家自然科学基金重点项目
|
文献收藏号
|
CSCD:6494787
|
参考文献 共
71
共4页
|
1.
郑度. 全球变化背景下中国自然地域系统研究前沿.
地理学报,2016,71(9):1475-1483
|
CSCD被引
22
次
|
|
|
|
2.
Grundstein A. Assessing climate change in the contiguous United States using a modified Thornthwaite climate classification scheme.
Professional Geographer,2008,60(3):398-412
|
CSCD被引
4
次
|
|
|
|
3.
Bailey R G.
Ecosystem Geography: From Ecoregions to Sites. 2nd ed,2009
|
CSCD被引
1
次
|
|
|
|
4.
IPCC.
Summary for Policymakers. Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis,2013
|
CSCD被引
2
次
|
|
|
|
5.
Mahlstein I. Pace of shifts in climate regions increases with global temperature.
Nature Climate Change,2013,3(8):739-743
|
CSCD被引
20
次
|
|
|
|
6.
Reid P C. Global impacts of the 1980s regime shift.
Global Change Biology,2016,22(2):682-703
|
CSCD被引
8
次
|
|
|
|
7.
Huang J P. Global semi-arid climate change over last 60 years.
Climate Dynamics,2016,46(3/4):1131-1150
|
CSCD被引
29
次
|
|
|
|
8.
Chan D. Significant anthropogenic-induced changes of climate classes since 1950.
Scientific Reports,2015,5:13487
|
CSCD被引
7
次
|
|
|
|
9.
Gerstengarbe F W. A short update on Koeppen climate shifts in Europe between 1901 and 2003.
Climatic Change,2009,92(1/2):99-107
|
CSCD被引
2
次
|
|
|
|
10.
Feng S. Evaluating observed and projected future climate changes for the Arctic using the Koppen-Trewartha climate classification.
Climate Dynamics,2012,38(7/8):1359-1373
|
CSCD被引
3
次
|
|
|
|
11.
朱耿睿. 基于柯本气候分类的1961-2013年我国气候区类型及变化.
干旱区地理,2015,38(6):1121-1132
|
CSCD被引
11
次
|
|
|
|
12.
杨建平. 近50年来中国干湿气候界线的10年际波动.
地理学报,2002,57(6):655-661
|
CSCD被引
85
次
|
|
|
|
13.
马柱国. 中国干旱和半干旱带的10年际演变特征.
地球物理学报,2005,48(3):519-525
|
CSCD被引
95
次
|
|
|
|
14.
郑景云. 1981~2010年中国气候区划.
科学通报,2013,58(30):3088-3099
|
CSCD被引
87
次
|
|
|
|
15.
Lohmann U. The Koppen climate classification as a diagnostic tool for general circulation models.
Climate Research,1993,3(3):177-193
|
CSCD被引
4
次
|
|
|
|
16.
Gnanadesikan A. Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Koppen climate classification.
Geophysical Research Letters,2006,33(22):2832-2849
|
CSCD被引
2
次
|
|
|
|
17.
Elguindi N. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification.
Climatic Change,2014,122(4):523-538
|
CSCD被引
15
次
|
|
|
|
18.
Zhang X L. Deficiencies in the simulation of the geographic distribution of climate types by global climate models.
Climate Dynamics,2016,46(9/10):2749-2757
|
CSCD被引
2
次
|
|
|
|
19.
Belda M. Evaluation of CMIP5 present climate simulations using the Kӧppen-Trewartha climate classification.
Climate Research,2015,64(3):201-212
|
CSCD被引
2
次
|
|
|
|
20.
Dai A G. Increasing drought under global warming in observations and models.
Nature Climate Change,2013,3(1):52-58
|
CSCD被引
128
次
|
|
|
|
|