镁合金应力腐蚀开裂行为研究进展
Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys
查看参考文献65篇
文摘
|
系统总结了镁合金的应力腐蚀开裂行为及其微观失效机制的研究进展,重点介绍了阳极溶解、机械载荷、氢脆效应等对裂纹开裂模式的影响和作用规律,以及提高镁合金抗应力腐蚀开裂能力的处理方法及其作用机制;指出目前研究中存在的问题,并提出未来的研究重点和发展方向。 |
其他语种文摘
|
In this paper, the stress corrosion cracking (SCC) behavior of Mg-alloys and the relevant failure mechanism were systematically summarized. Moreover, the effect of anodic dissolution, mechanical loading and hydrogen embrittlement on the SCC cracking modes was described. The measures for improving the SCC resistance of Mg-alloys were also introduced. Finally, the existing problems in the current study, the research emphasis and direction in the future are also pointed out. |
来源
|
中国腐蚀与防护学报
,2019,39(2):89-95 【核心库】
|
DOI
|
10.11902/1005.4537.2018.186
|
关键词
|
镁合金
;
应力腐蚀开裂
;
局部腐蚀
;
氢致开裂
;
腐蚀机制
|
地址
|
1.
沈阳理工大学环境与化学工程学院, 沈阳, 110159
2.
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
3.
中国科学院金属研究所环境腐蚀研究中心, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
沈阳理工大学博士后启动基金
|
文献收藏号
|
CSCD:6491509
|
参考文献 共
65
共4页
|
1.
褚武扬.
氢脆和应力腐蚀,2013
|
CSCD被引
26
次
|
|
|
|
2.
Choudhary L. Mechanical integrity of magnesium alloys for biomedical applications.
Surface Modification of Magnesium and its Alloys for Biomedical Applications. Volume 1: Biological Interactions, Mechanical Properties and Testing,2015:179
|
CSCD被引
1
次
|
|
|
|
3.
Winzer N. A critical review of the stress corrosion cracking (SCC) of magnesium alloys.
Adv. Eng. Mater,2005,7:659
|
CSCD被引
34
次
|
|
|
|
4.
Sieradzki K. Brittle behavior of ductile metals during stress-corrosion cracking.
Philos. Mag. A,1985,51:95
|
CSCD被引
12
次
|
|
|
|
5.
Parkins R N. Predictive approaches to stress corrosion cracking failure.
Corros. Sci,1980,20:147
|
CSCD被引
33
次
|
|
|
|
6.
Winzer N. Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys.
Mater. Sci. Eng. A,2008,488:339
|
CSCD被引
14
次
|
|
|
|
7.
Winzer N. Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium.
Mater. Sci. Eng. A,2008,472:97
|
CSCD被引
7
次
|
|
|
|
8.
Winzer N. Fractography of stress corrosion cracking of Mg-Al alloys.
Metall. Mater. Trans. A,2008,39:1157
|
CSCD被引
10
次
|
|
|
|
9.
Ben-Hamu G. Stress corrosion cracking of new Mg-Zn-Mn wrought alloys containing Si.
Corros. Sci,2008,50:1505
|
CSCD被引
2
次
|
|
|
|
10.
Chen J. Stress corrosion cracking behaviors of AZ91 magnesium alloy in deicer solutions using constant load.
Mater. Sci. Eng. A,2009,515:79
|
CSCD被引
6
次
|
|
|
|
11.
Kannan M B. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80.
Mater. Sci. Eng. A,2008,480:529
|
CSCD被引
13
次
|
|
|
|
12.
Ebtehaj K. The influence of chloride-chromate solution composition on the stress-corrosion cracking of a Mg-Al alloy.
Corros. Sci,1988,28:811
|
CSCD被引
3
次
|
|
|
|
13.
Stampella R S. Environmentally-induced cracking of magnesium.
Corros. Sci,1984,24:325
|
CSCD被引
8
次
|
|
|
|
14.
Wearmouth W R. Role of stress in the stress corrosion cracking of a Mg-Al alloy.
Corrosion,1973,29:251
|
CSCD被引
3
次
|
|
|
|
15.
Chakrapani D G. Transgranular SCC of a Mg-Al alloy: Crystallographic, fractographic and acoustic-emission studies.
Metall. Trans. A,1975,6:1155
|
CSCD被引
3
次
|
|
|
|
16.
Chakrapani D G. Hydrogen embrittlement in a Mg-Al alloy.
Metall. Trans. A,1976,7:173
|
CSCD被引
3
次
|
|
|
|
17.
Meletis E I. Crystallography of stress corrosion cracking in pure magnesium.
Corrosion,1984,40:39
|
CSCD被引
7
次
|
|
|
|
18.
Kannan M B. Pitting-induced hydrogen embrittlement of magnesium-aluminium alloy.
Mater. Des,2012,42:321
|
CSCD被引
10
次
|
|
|
|
19.
Curioni M. The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging.
Electrochim. Acta,2014,120:284
|
CSCD被引
24
次
|
|
|
|
20.
Singh Raman R K. Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review.
Eng. Fract. Mech,2015,137:97
|
CSCD被引
29
次
|
|
|
|
|