类Hartree-Fock方程的数值方法
NUMERICAL METHODS FOR HARTREE-FOCK-LIKE EQUATIONS
查看参考文献57篇
文摘
|
本文的主要目的是介绍近年来大基组下的类Hartree-Fock方程数值求解的一些进展.类Hartree-Fock方程出现在Hartree-Fock理论和含杂化泛函的Kohn-Sham密度泛函理论中,是电子结构理论中一类重要的方程.该方程在复杂的化学和材料体系的电子结构计算中有广泛地应用.由于计算代价的原因,类Hartree-Fock方程一般只被用在较小规模的量子体系(含几十到几百个电子)的计算.从数学角度上讲,类Hartree-Fock方程是一个非线性积分-微分方程组,其计算代价主要来自于积分算子的部分,也就是Fock交换算子.通过发展和结合自适应压缩交换算子方法(ACE),投影的C-DIIS方法(PC-DIIS)方法,以及插值可分密度近似方法(ISDF),我们大大降低了杂化泛函密度泛函理论的计算代价.以含1000个硅原子的体系为例,我们将平面波基组下的杂化泛函的计算代价降至接近不含Fock交换算子的半局域泛函计算的水平.同时,我们发现类Hartree-Fock方程的数学结构也为一类特征值问题的迭代求解提供了新的思路. |
其他语种文摘
|
The main goal of this paper is to introduce some recent developments of numerical methods for solving Hartree-Fock-like equations in the context of large basis sets. Hartree-Fock-like equations are an important type of equations in electronic structure theory. They appear in the Hartree-Fock theory, as well as the Kohn-Sham density functional theory with hybrid exchange-correlation functionals, and are widely used in electronic structure calculations of complex chemical and materials systems. Because of its high computational cost, Hartree-Fock-like equations are typically only used in systems consisting of tens to hundreds of electrons. From a mathematical perspective, Hartree-Fock-like equations are a system of nonlinear integro-differential equations. The computational cost is mainly due to the integral operator part, namely the Fock exchange operator. Through the development of the adaptive compression method (ACE), the projected commutator-direct inversion in the iterative subspace (PC-DIIS) method, and the interpolative separable density fitting (ISDF) method, we demonstrate that the cost of Kohn-Sham density functional theory calculations with hybrid functionals can be significantly reduced. Using a silicon system with 1000 atoms for example, we have reduced the cost of hybrid functional calculations with a planewave basis set to a level that is close to the cost of semi-local functional calculations, which do not involve the Fock exchange operator. Meanwhile, we find that the structure of Hartree-Fock-like equations provides new insights for the iterative solution of one type of eigenvalue problems. |
来源
|
计算数学
,2019,41(2):113-125 【核心库】
|
关键词
|
类Hartree-Fock方程
;
非线性特征值问题
;
积分-微分算子
;
量子化学
;
电子结构理论
;
密度泛函理论
|
地址
|
加州大学伯克利分校数学系, 劳伦斯伯克利国家实验室, 美国, 伯克利, 94720
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7791 |
学科
|
数学 |
基金
|
美国国家科学基金
;
美国能源部(DOE)项目
|
文献收藏号
|
CSCD:6488852
|
参考文献 共
57
共3页
|
1.
Hohenberg P. Inhomogeneous electron gas.
Phys. Rev,1964,136:B864-B871
|
CSCD被引
1092
次
|
|
|
|
2.
Kohn W. Self-consistent equations including exchange and correlation effects.
Phys. Rev,1965,140:A1133-A1138
|
CSCD被引
1328
次
|
|
|
|
3.
Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem.
Proc. Natl. Acad. Sci,1979,76:6062-6065
|
CSCD被引
29
次
|
|
|
|
4.
Lieb E H. Density functional for Coulomb systems.
Int J. Quantum Chem,1983,24:243
|
CSCD被引
14
次
|
|
|
|
5.
Ceperley D M. Ground state of the electron gas by a stochastic method.
Phys. Rev. Lett,1980,45:566-569
|
CSCD被引
379
次
|
|
|
|
6.
Perdew J P. Self-interaction correction to density-functional approximations for many-electron systems.
Phys. Rev. B,1981,23:5048-5079
|
CSCD被引
417
次
|
|
|
|
7.
Lee C. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.
Phys. Rev. B,1988,37:785-789
|
CSCD被引
1426
次
|
|
|
|
8.
Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior.
Phys. Rev. A,1988,38:3098-3100
|
CSCD被引
632
次
|
|
|
|
9.
Perdew J P. Generalized gradient approximation made simple.
Phys. Rev. Lett,1996,77:3865-3868
|
CSCD被引
5494
次
|
|
|
|
10.
Staroverov V N. Comparative assessment of a new nonem-pirical density functional: Molecules and hydrogen-bonded complexes.
J. Chem. Phys,2003,119:12129-12137
|
CSCD被引
10
次
|
|
|
|
11.
Sun J. Strongly Constrained and Appropriately Normed Semilocal Density Functional.
Phys. Rev. Lett,2015,115:036402
|
CSCD被引
48
次
|
|
|
|
12.
Becke A D. Density functional thermochemistry. III. The role of exact exchange.
J. Chem. Phys,1993,98:5648
|
CSCD被引
2027
次
|
|
|
|
13.
Perdew J P. Rationale for mixing exact exchange with density functional approximations.
J. Chem. Phys,1996,105:9982-9985
|
CSCD被引
69
次
|
|
|
|
14.
Heyd J. Hybrid functionals based on a screened Coulomb potential.
J. Chem. Phys,2003,118(18):8207-8215
|
CSCD被引
387
次
|
|
|
|
15.
Ren X. Random-phase approximation and its applications in computational chemistry and materials science.
J. Mater. Sci,2012,47:7447-7471
|
CSCD被引
1
次
|
|
|
|
16.
Zhang I Y. Wave-function inspired density functional applied to the H2/H_2~+ challenge.
New J. Phys,2016,18:073026
|
CSCD被引
1
次
|
|
|
|
17.
Seidl M. Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities.
Phys. Rev. A,2007,75:042511
|
CSCD被引
2
次
|
|
|
|
18.
Malet F. Strong Correlation in Kohn-Sham Density Functional Theory.
Phys. Rev. Lett,2012,109:246402
|
CSCD被引
2
次
|
|
|
|
19.
Dion M. Van der Waals density functional for general geometries.
Physical Rev. Lett,2004,92:246401
|
CSCD被引
91
次
|
|
|
|
20.
Tkatchenko A. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data.
Phys. Rev. Lett,2009,102:073005
|
CSCD被引
80
次
|
|
|
|
|