大气成分的遥感监测方法与应用
Remote Sensing Monitoring Methods and Applications of Atmospheric Constituents
查看参考文献60篇
文摘
|
对大气成分准确、及时地监测是掌握大气成分分布特征、研究大气污染成因机制、有效防治大气污染的前提。遥感监测技术在大气成分的观测过程中具有远距离实时观测、快速分析成分多样的大气混合物、无需采样便可获得目标成分的立体时空分布结果等优势。大气成分的遥感监测方法多样,各种仪器优势各异,覆盖了多样的气体和气溶胶的监测范围。根据各仪器距地面高度的差异,遥感平台可划分为地面平台、航空平台和航天平台。遥感技术在大气成分监测领域中应用广泛,已满足了多种观测目的的观测要求。介绍了大气成分的遥感监测方法和平台,并总结了针对不同目的的遥感应用实例,展望了遥感方法在大气成分观测方面的发展方向。 |
其他语种文摘
|
Accurate and timely monitoring of atmospheric constituents is the prerequisite for mastering the distribution characteristics of atmospheric constituents,studying the genetic mechanism of the forming of atmospheric pollution,and effectively preventing and controlling air pollution. Among various observation methods of atmospheric constituents,remote sensing monitoring technology can provide the long-distance and real-time observation, have the ability of rapid analysis of diverse atmospheric mixtures, and obtain stereoscopic spatiotemporal distribution of target constituents without sampling. There are various methods and instruments for remote sensing monitoring of atmospheric constituents,and each of them has its unique advantage,covering a multiple gases and aerosol. According to the difference of the height of the remote sensing platform,it can be divided into ground platform,aviation platform and space platform. Remote sensing technology is widely applied in the field of atmospheric constituents monitoring,and meets the observational requirements for a variety of purposes. This paper introduced the remote sensing monitoring methods and platforms of atmospheric constituents and summarized their application examples for different purposes. It also outlined the future development direction of remote sensing methods in atmospheric constituents' observation. |
来源
|
地球科学进展
,2019,34(3):255-264 【核心库】
|
DOI
|
10.11867/j.issn.1001-8166.2019.03.0255
|
关键词
|
大气成分
;
遥感监测
;
遥感平台
;
应用
|
地址
|
1.
中国科学技术大学地球和空间科学学院, 安徽, 合肥, 230026
2.
中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031
3.
中国科学院城市环境研究所, 中国科学院城市大气环境研究卓越创新中心, 福建, 厦门, 361021
4.
中国科学技术大学, 极地环境与全球变化安徽省重点实验室, 安徽, 合肥, 230026
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-8166 |
学科
|
大气科学(气象学) |
基金
|
科技部国家重点研发计划项目
;
国家自然科学基金优秀青年科学基金
|
文献收藏号
|
CSCD:6484607
|
参考文献 共
60
共3页
|
1.
田彪. 大气CO研究进展.
地球科学进展,2017,32(1):34-43
|
CSCD被引
9
次
|
|
|
|
2.
Harbeck S. Understanding the VOC sorption processes on fluoro alkyl substituted phthalocyanines using ATR FT-IR spectroscopy and QCM measurements.
Sensors and Actuators B:Chemical,2013,176:838-849
|
CSCD被引
4
次
|
|
|
|
3.
Griffiths P R.
Fourier Transform Infrared Spectrometry,2007
|
CSCD被引
21
次
|
|
|
|
4.
吴瑾光.
近代傅里叶变换红外光谱技术及应用,1994
|
CSCD被引
116
次
|
|
|
|
5.
Griffith D W. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra.
Atmospheric Measurement Techniques,2011,4:1061-1076
|
CSCD被引
17
次
|
|
|
|
6.
Reuter M. Retrieval of atmospheric CO_2 with enhanced accuracy and precision from SCIAMACHY:Validation with FTS measurements and comparison with model results.
Journal of Geophysical Research:Atmospheres,2011,116(D4)
|
CSCD被引
16
次
|
|
|
|
7.
Schneising O. Atmospheric greenhouse gases retrieved from SCIAMACHY:Comparison to ground-based FTS measurements and model results.
Atmospheric Chemistry and Physics,2012,12(3):1527-1540
|
CSCD被引
5
次
|
|
|
|
8.
Guerlet S. Impact of aerosol and thin cirrus on retrieving and validating XCO_2 from GOSAT shortwave infrared measurements.
Journal of Geophysical Research:Atmospheres,2013,118(10):4887-4905
|
CSCD被引
12
次
|
|
|
|
9.
Dils B. The Greenhouse Gas Climate Change Initiative(GHG-CCI):Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSOFTS/GOSAT CO_2 and CH_4 retrieval algorithm products with measurements from the TCCON.
Atmospheric Measurement Techniques,2014,7(6):1723-1744
|
CSCD被引
6
次
|
|
|
|
10.
Lindqvist H. Does GOSAT capture the true seasonal cycle of carbon dioxide?.
Atmospheric Chemistry and Physics,2015,15(22):13023-13040
|
CSCD被引
5
次
|
|
|
|
11.
Ohyama H. Observations of XCO_2 and XCH_4 with ground-based high-resolution FTS at Saga, Japan,and comparisons with GOSAT products.
Atmospheric Measurement Techniques,2015,8(12):5263-5276
|
CSCD被引
3
次
|
|
|
|
12.
Kulawik S S. Consistent evaluation of GOSAT,SCIAMACHY,carbon tracker,and MACC through comparisons to TCCON.
Atmospheric Measurement Techniques Discussions,2016,9:683-709
|
CSCD被引
6
次
|
|
|
|
13.
Wang Wei. Investigating the performance of a greenhouse gas observatory in Hefei,China.
Atmospheric Measurement Techniques,2017,10(7):2627
|
CSCD被引
15
次
|
|
|
|
14.
董云升. 激光雷达在城市交通污染中应用研究.
光学学报,2010,30(2):315-320
|
CSCD被引
20
次
|
|
|
|
15.
吕立慧. 新型微脉冲激光雷达测量大气水平能见度.
中国激光,2014,41(9):218-222
|
CSCD被引
1
次
|
|
|
|
16.
Burton S P. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples.
Atmospheric Measurement Techniques,2012,5(1):73
|
CSCD被引
22
次
|
|
|
|
17.
刘文清. 中国大气环境光学探测研究.
遥感学报,2016,20(5):724-732
|
CSCD被引
6
次
|
|
|
|
18.
刘西川. 智能手机参与大气探测的研究进展与展望.
地球科学进展,2018,33(12):1223-1236
|
CSCD被引
1
次
|
|
|
|
19.
Peters E. Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean:SCIAMACHY and GOME-2 validation using ship-based MAXDOAS observations.
Atmospheric Chemistry and Physics,2012,12(22):11179-11197
|
CSCD被引
5
次
|
|
|
|
20.
高闽光. 机载FTIR被动遥测大气痕量气体.
光谱学与光谱分析,2006,26(12):2203-2206
|
CSCD被引
11
次
|
|
|
|
|