帮助 关于我们

返回检索结果

大气成分的遥感监测方法与应用
Remote Sensing Monitoring Methods and Applications of Atmospheric Constituents

查看参考文献60篇

陈泽青 1   刘诚 1,2,3,4 *   胡启后 2   洪茜茜 2   刘浩然 1   邢成志 1   苏文静 1  
文摘 对大气成分准确、及时地监测是掌握大气成分分布特征、研究大气污染成因机制、有效防治大气污染的前提。遥感监测技术在大气成分的观测过程中具有远距离实时观测、快速分析成分多样的大气混合物、无需采样便可获得目标成分的立体时空分布结果等优势。大气成分的遥感监测方法多样,各种仪器优势各异,覆盖了多样的气体和气溶胶的监测范围。根据各仪器距地面高度的差异,遥感平台可划分为地面平台、航空平台和航天平台。遥感技术在大气成分监测领域中应用广泛,已满足了多种观测目的的观测要求。介绍了大气成分的遥感监测方法和平台,并总结了针对不同目的的遥感应用实例,展望了遥感方法在大气成分观测方面的发展方向。
其他语种文摘 Accurate and timely monitoring of atmospheric constituents is the prerequisite for mastering the distribution characteristics of atmospheric constituents,studying the genetic mechanism of the forming of atmospheric pollution,and effectively preventing and controlling air pollution. Among various observation methods of atmospheric constituents,remote sensing monitoring technology can provide the long-distance and real-time observation, have the ability of rapid analysis of diverse atmospheric mixtures, and obtain stereoscopic spatiotemporal distribution of target constituents without sampling. There are various methods and instruments for remote sensing monitoring of atmospheric constituents,and each of them has its unique advantage,covering a multiple gases and aerosol. According to the difference of the height of the remote sensing platform,it can be divided into ground platform,aviation platform and space platform. Remote sensing technology is widely applied in the field of atmospheric constituents monitoring,and meets the observational requirements for a variety of purposes. This paper introduced the remote sensing monitoring methods and platforms of atmospheric constituents and summarized their application examples for different purposes. It also outlined the future development direction of remote sensing methods in atmospheric constituents' observation.
来源 地球科学进展 ,2019,34(3):255-264 【核心库】
DOI 10.11867/j.issn.1001-8166.2019.03.0255
关键词 大气成分 ; 遥感监测 ; 遥感平台 ; 应用
地址

1. 中国科学技术大学地球和空间科学学院, 安徽, 合肥, 230026  

2. 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽, 合肥, 230031  

3. 中国科学院城市环境研究所, 中国科学院城市大气环境研究卓越创新中心, 福建, 厦门, 361021  

4. 中国科学技术大学, 极地环境与全球变化安徽省重点实验室, 安徽, 合肥, 230026

语种 中文
文献类型 研究性论文
ISSN 1001-8166
学科 大气科学(气象学)
基金 科技部国家重点研发计划项目 ;  国家自然科学基金优秀青年科学基金
文献收藏号 CSCD:6484607

参考文献 共 60 共3页

1.  田彪. 大气CO研究进展. 地球科学进展,2017,32(1):34-43 CSCD被引 9    
2.  Harbeck S. Understanding the VOC sorption processes on fluoro alkyl substituted phthalocyanines using ATR FT-IR spectroscopy and QCM measurements. Sensors and Actuators B:Chemical,2013,176:838-849 CSCD被引 4    
3.  Griffiths P R. Fourier Transform Infrared Spectrometry,2007 CSCD被引 21    
4.  吴瑾光. 近代傅里叶变换红外光谱技术及应用,1994 CSCD被引 116    
5.  Griffith D W. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques,2011,4:1061-1076 CSCD被引 17    
6.  Reuter M. Retrieval of atmospheric CO_2 with enhanced accuracy and precision from SCIAMACHY:Validation with FTS measurements and comparison with model results. Journal of Geophysical Research:Atmospheres,2011,116(D4) CSCD被引 16    
7.  Schneising O. Atmospheric greenhouse gases retrieved from SCIAMACHY:Comparison to ground-based FTS measurements and model results. Atmospheric Chemistry and Physics,2012,12(3):1527-1540 CSCD被引 5    
8.  Guerlet S. Impact of aerosol and thin cirrus on retrieving and validating XCO_2 from GOSAT shortwave infrared measurements. Journal of Geophysical Research:Atmospheres,2013,118(10):4887-4905 CSCD被引 12    
9.  Dils B. The Greenhouse Gas Climate Change Initiative(GHG-CCI):Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSOFTS/GOSAT CO_2 and CH_4 retrieval algorithm products with measurements from the TCCON. Atmospheric Measurement Techniques,2014,7(6):1723-1744 CSCD被引 6    
10.  Lindqvist H. Does GOSAT capture the true seasonal cycle of carbon dioxide?. Atmospheric Chemistry and Physics,2015,15(22):13023-13040 CSCD被引 5    
11.  Ohyama H. Observations of XCO_2 and XCH_4 with ground-based high-resolution FTS at Saga, Japan,and comparisons with GOSAT products. Atmospheric Measurement Techniques,2015,8(12):5263-5276 CSCD被引 3    
12.  Kulawik S S. Consistent evaluation of GOSAT,SCIAMACHY,carbon tracker,and MACC through comparisons to TCCON. Atmospheric Measurement Techniques Discussions,2016,9:683-709 CSCD被引 6    
13.  Wang Wei. Investigating the performance of a greenhouse gas observatory in Hefei,China. Atmospheric Measurement Techniques,2017,10(7):2627 CSCD被引 15    
14.  董云升. 激光雷达在城市交通污染中应用研究. 光学学报,2010,30(2):315-320 CSCD被引 20    
15.  吕立慧. 新型微脉冲激光雷达测量大气水平能见度. 中国激光,2014,41(9):218-222 CSCD被引 1    
16.  Burton S P. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples. Atmospheric Measurement Techniques,2012,5(1):73 CSCD被引 22    
17.  刘文清. 中国大气环境光学探测研究. 遥感学报,2016,20(5):724-732 CSCD被引 6    
18.  刘西川. 智能手机参与大气探测的研究进展与展望. 地球科学进展,2018,33(12):1223-1236 CSCD被引 1    
19.  Peters E. Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean:SCIAMACHY and GOME-2 validation using ship-based MAXDOAS observations. Atmospheric Chemistry and Physics,2012,12(22):11179-11197 CSCD被引 5    
20.  高闽光. 机载FTIR被动遥测大气痕量气体. 光谱学与光谱分析,2006,26(12):2203-2206 CSCD被引 11    
引证文献 3

1 周惜荫 城市大气挥发性有机物研究进展 地球科学进展,2022,37(8):841-850
CSCD被引 0 次

2 王姝 大气污染物排放调查监测研究进展 环境监测管理与技术,2023,35(1):9-13
CSCD被引 3

显示所有3篇文献

论文科学数据集

1. 空间大气密度及大气成分高程梯度模拟数据(2020年)

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号