质子交换膜燃料电池膜电极的结构优化
Structural optimization of PEMFC membrane electrode assembly
查看参考文献58篇
文摘
|
膜电极(membrane electrode assembly,MEA)是质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)的核心部件,为PEMFC提供了多相物质传递的微通道和电化学反应场所。为了实现燃料电池商业化目标,需要制备高功率密度、低Pt载量、耐久性好的MEA。在MEA中除了催化剂以外,各功能层结构、层与层之间的界面都对MEA的性能具有重要影响。传统方法(CCS法和CCM法)制备的MEA在结构上有很多缺陷,明显制约了Pt的利用率和系统传质能力。通过优化各功能层结构消除缺陷,将有利于进一步提升PEMFC综合性能。本文从传统MEA结构存在的问题出发,梳理了近年来关于催化层、质子交换膜和气体扩散层结构优化方面的文献,归纳总结了各先进结构的制备方法、构效关系以及优缺点,对未来高性能、低成本和长寿命的MEA的开发具有指导意义。 |
其他语种文摘
|
Membrane electrode assembly(MEA)is the core component of proton exchange membrane fuel cell(PEMFC),which provides the microchannels for the transfer of multiphase substances and electrochemical reaction sites.To achieve the commercialization of PEMFC,fabricating MEA with high power density,low Pt loading and good durability is needed.Inside MEA,the structures of function layers and the interfaces between layer to layer all have great impact on the performance of MEA outside of the catalyst.The MEA prepared by traditional methods(CCS method and CCM method)has many structural defects,which greatly reduces the utilization rate of Pt and the mass transfer ability.By optimizing the structure of each functional layer to eliminate defects,it will be beneficial to further improve the comprehensive performance of PEMFC.Based on the problems existing in the traditional MEA structure,literatures in recent years on the improvement of the structure of CL,PEM and GDL were combed,and the preparation methods,structure-activity relations,and advantages/disadvantages of each advanced structure were summarized.This paper will provide a guidance for the development of MEA with high performance,low cost and long service life in the future. |
来源
|
材料工程
,2019,47(4):1-14 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2018.001176
|
关键词
|
质子交换膜燃料电池
;
膜电极制备
;
结构优化
;
膜电极性能
|
地址
|
1.
同济大学汽车学院新能源汽车工程中心, 上海, 201804
2.
上海机车检测认证技术研究中心有限公司, 上海, 201805
3.
佛罗里达州立大学电气与计算机工程系, 美国, 佛罗里达, 32304
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
中国石油科技创新基金项目
;
上海市科委科研计划项目
|
文献收藏号
|
CSCD:6484491
|
参考文献 共
58
共3页
|
1.
衣宝廉.
燃料电池和燃料电池车发展历程及技术现状,2018
|
CSCD被引
6
次
|
|
|
|
2.
Britto P J. Improved charge transfer at carbon nanotube electrodes.
Advanced Materials,1999,11(2):154-157
|
CSCD被引
40
次
|
|
|
|
3.
Hwang S J. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction.
Journal of the American Chemical Society,2012,134(48):19508-19511
|
CSCD被引
17
次
|
|
|
|
4.
NONE.
Fuel cell technical team roadmap,2013
|
CSCD被引
1
次
|
|
|
|
5.
王诚. 车用质子交换膜燃料电池材料部件.
化学进展,2015,27(2/3):310-320
|
CSCD被引
16
次
|
|
|
|
6.
黄豪.
质子交换膜燃料电池膜电极耐久性研究,2018
|
CSCD被引
1
次
|
|
|
|
7.
汪圣龙. 膜电极结构对质子交换膜燃料电池性能的影响.
材料导报,2003,17(10):37-40
|
CSCD被引
2
次
|
|
|
|
8.
Jeong G. High-performance membraneelectrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells.
Journal of Power Sources,2016,323:142-146
|
CSCD被引
9
次
|
|
|
|
9.
Zhang C K. Supported noble metals on hydrogen-treated TiO_2 nanotube arrays as highly ordered electrodes for fuel cells.
Chem Sus Chem,2013,6(4):659-666
|
CSCD被引
13
次
|
|
|
|
10.
Wilson M S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes.
Journal of Applied Electrochemistry,1992,22(1):1-7
|
CSCD被引
47
次
|
|
|
|
11.
Cho D H. Swelling agent adopted decal transfer method for membrane electrode assembly fabrication.
Journal of Power Sources,2014,258(14):272-280
|
CSCD被引
2
次
|
|
|
|
12.
Park H S. Modified decal method and its related study of microporous layer in PEM fuel cells.
Journal of the Electrochemical Society,2008,155(5):B455-B460
|
CSCD被引
2
次
|
|
|
|
13.
Shahgaldi S. Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells.
International Journal of Hydrogen Energy,2017,42(16):11813-11822
|
CSCD被引
4
次
|
|
|
|
14.
Krishnan N N. Fabrication of MEA with hydrocarbon based membranes using low temperature decal method for DMFC.
International Journal of Hydrogen Energy,2010,35(11):5647-5655
|
CSCD被引
3
次
|
|
|
|
15.
Hong J C. Development of a novel decal transfer process for fabrication of high-performance and reliable membrane electrode assemblies for PEMFCs.
International Journal of Hydrogen Energy,2011,36(19):12465-12473
|
CSCD被引
5
次
|
|
|
|
16.
Taylor E J. Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells.
Journal of the Electrochemical Society,1992,139(5):L45-L46
|
CSCD被引
17
次
|
|
|
|
17.
Lapp A S. Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method.
Journal of the American Chemical Society,2018,140:6249-6259
|
CSCD被引
1
次
|
|
|
|
18.
Qu N S. Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density.
Surface & Coatings Technology,2003,168(2):123-128
|
CSCD被引
35
次
|
|
|
|
19.
Antoine O. In situ electrochemical deposition of Pt nanoparticles on carbon and inside nafion.
Creative 12 Education,2001,5(45):13825-13832
|
CSCD被引
1
次
|
|
|
|
20.
Kim H. Development of novel method for preparation of PEMFC electrodes.
Electrochemical and Solid-State Letters,2004,7(4):A71-A74
|
CSCD被引
2
次
|
|
|
|
|