中国浮空器遥感遥测应用现状与展望
The Present Situation and Prospect of Aerostat Applied to Remote Sensing and Remote Survey in China
查看参考文献21篇
文摘
|
浮空器是一种新型的航空遥感遥测平台,适合于中小面积高分辨率的遥感遥测,尤其是中低空小型遥控飞艇,可依靠动力推进与操纵系统实现可操作飞行,具有飞行时间长、覆盖面积大、载重能力强、效费比高等特点,与其他几种航空平台相比,飞艇平台具有综合优势,在基础地理数据采集、国土资源勘查、环境监测、农业植被监测等各个领域具有广泛的应用前景。本文分析了中国有人飞机、无人机和中低空飞艇、平流层飞艇平台在遥感遥测中应用案例,以及各个航空平台的性能特点、工作方式、技术难点等,对比了各种平台的技术特点;探讨了中小型遥控飞艇平台在遥感遥测中应用的优势,研究了平流层飞艇的发展现状与关键技术;并结合国际相关领域的研究进展,对未来浮空器遥感应用的前景进行了展望。 |
其他语种文摘
|
The aerostat is a new airborne remote sensing platform,which is suitable for high resolution remote sensing in a small and medium area.The floating aircraft,especially the medium and low altitude small remote control airship,can be supported by the power propulsion and control system to implement the maneuvering flight.It has the characteristics of long flight time,large coverage area,strong load capacity,and high cost-efficiency.Satellite remote sensing data that lacks high spatial resolution and timeliness is of limited ability to access remote environment at a micro scale.Rotary or fixed-wing unmanned aerial vehicle (UAV) platforms,which is capable of performing unmanned inspection,surveillance,reconnaissance,and mapping of inimical areas with amateur or SLR digital cameras,can fly with manual,semi-automated,and autonomous modes.It is well known that recently UAVs in the geomatics field became a common platform for data acquisition,but the platforms have a low payload capacity and its flight was too short to be a valid complementary solution to data acquisitions.Compared with several other aviation platforms,the airship platform has a comprehensive advantage,which meets the comprehensive urgent needs and precision large scale mapping requirement for the areas with complex terrains.It has a wide application prospect in various fields,such as basic geographic data collection,land resources exploration,environmental monitoring,and agricultural vegetation monitoring.As its height superiority,the airship can effectively overcome the influence of earth curvature and the environment which helps to enhance the detection performance.Near space aircraft is the fundamental infrastructure platform in breaking down the natural barriers between the aviation region and the outer space.The stratosphere airship,which is one of the quasi-static aircrafts within the near space,has unique platform advantages.It is equipped with laser scanner,VIS camera (one for vertical capturing or more for slope capturing),thermo camera,and INS/GPS as an exterior orientation (pose) determination in undertaking tasks of aviation thermometric mapping and environmental studies.This objectives of this paper are (1) to analyze the application cases of the remote sensing telemetry of China's human aircraft,UAV,middle and low altitude airship and stratospheric airship platform;(2) to analyze the performance characteristics,working methods,and technical difficulties of each aviation platform;(3) to compare the technical features of various platforms;(4) to discusse the advantages of the application of the small and medium remote control airship platform in remote sensing telemetry,and (5) to explore the development status and key technology of the stratospheric airship.In the end,the future application of the remote aerostat is prospected in the light of the research progress in the international related fields. |
来源
|
地球信息科学学报
,2019,21(4):504-511 【核心库】
|
DOI
|
10.12082/dqxxkx.2019.180390
|
关键词
|
浮空器
;
遥感遥测
;
航空平台
;
低空飞艇
;
平流层飞艇
;
中国
|
地址
|
1.
中国电子科技集团公司第三十八研究所, 合肥, 230031
2.
北京航空航天大学航空科学与工程学院, 北京, 100083
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1560-8999 |
学科
|
测绘学;航空 |
基金
|
国家重点研发计划项目
|
文献收藏号
|
CSCD:6477390
|
参考文献 共
21
共2页
|
1.
桂德竹. 我国航空遥感发展现状及若干建议.
遥感信息,2013,28(1):119-122
|
CSCD被引
5
次
|
|
|
|
2.
Bitelli G. Low height aerial imagery and digital photogram metrical processing for archaeological mapping.
Remote Sensing and Spatial Information Sciences,200435(B5):498-503
|
CSCD被引
1
次
|
|
|
|
3.
Gabriel A K.
Airship Technology,1999
|
CSCD被引
3
次
|
|
|
|
4.
曹立. 遥控飞艇数字航空摄影系统.
测绘与空间地理信息,2005,28(5):92-93
|
CSCD被引
3
次
|
|
|
|
5.
Everaerts J. The use of unmanned aerial vehicles (UAVS) for remote sensing and mapping.
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1,2008:1187-1191
|
CSCD被引
1
次
|
|
|
|
6.
中华人民共和国中央人民政府.
国家中长期科学与技术发展规划纲要(2006-2020)
|
CSCD被引
1
次
|
|
|
|
7.
Lin Z J. UAV for mapping-low altitude photogrammetric survey.
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1,2008:1183-1186
|
CSCD被引
1
次
|
|
|
|
8.
.
新舟60遥感飞机首飞,航空遥感用的飞机不再姓"美",2017
|
CSCD被引
1
次
|
|
|
|
9.
晏磊. 无人机航空遥感系统关键技术研究.
武汉大学学报·工学版,2004,37(6):67-71
|
CSCD被引
34
次
|
|
|
|
10.
廖小罕. 无人机遥感众创时代.
地理信息科学学报,2016,18(11):1439-1447
|
CSCD被引
1
次
|
|
|
|
11.
彭晓东. 无人飞艇低空航测系统.
测绘科学,2009,34(4):11-14
|
CSCD被引
8
次
|
|
|
|
12.
张永军. 无人驾驶飞艇低空遥感影像的几何处理.
武汉大学学报·信息科学版,2009,34(3):284-287
|
CSCD被引
33
次
|
|
|
|
13.
Zhang A W. Toward high altitude airship ground-based bore sight calibration of hyper spectral push broom imaging sensors.
Remote Sensing,2015,7:17297-17311
|
CSCD被引
2
次
|
|
|
|
14.
逄超.
艇基低空遥感影像自动拼接关键技术研究,2010
|
CSCD被引
1
次
|
|
|
|
15.
Ren P. An unmanned airship thermal infrared remote sensing system for low-altitude and high spatial resolution monitoring of urban thermal environments: integration and an experiment.
Remote Sens,2015,7:14259-14275
|
CSCD被引
3
次
|
|
|
|
16.
王彦广. 平流层飞艇技术发展及其应用前景展望.
卫星与网络,2010(4):18-21
|
CSCD被引
6
次
|
|
|
|
17.
Lee M. The high altitude lighter than air airship efforts at US army space and missile defense command/army forces strategic command.
18th AIAA Lighter-Than-Air Systems Technology Conference,2009:1-29
|
CSCD被引
3
次
|
|
|
|
18.
刘东旭. 蒙皮热辐射特性对平流层浮空器氦气温度影响.
北京航空航天大学学报,2010,36(7):836-840
|
CSCD被引
11
次
|
|
|
|
19.
范春石. 深空自动飞艇探测器技术发展研究.
航天器工程,2012,21(2):85-93
|
CSCD被引
2
次
|
|
|
|
20.
Lin Z. UAV for mapping in the international archives of the photogrammetry.
Romote Sensing and Spatial Information Sciences. Vol. XXXVII,Part B2,2008
|
CSCD被引
1
次
|
|
|
|
|