基于纳米铝热剂的MEMS固体微推力器点火实验研究
Experimental Study on Ignition of MEMS Microthruster Based on Nanothermite Solid Propellant
查看参考文献20篇
文摘
|
MEMS固体微推力器可以形成单元数量巨大的微推力器阵列,适合低成本微、纳卫星系统,是极具潜力的新型卫星推力器。为研究基于纳米铝热剂的MEMS推力器工作特性,开展了大气和真空点火实验。大气下的燃烧羽流与空气进一步燃烧,导致羽流的发光持续时间约数ms,远大于真空试验,过估了在真空条件下的推力器作用时间。真空试验获得了动态推力特征和有效工作时间(约250μs),估算推力器的冲量约55μN·s~80μN·s。羽流影响范围的直径约为30mm、流向约70mm,羽流颗粒的运动速度约132m/s。测试结果显示,底部点火先将推进剂挤出喷孔,而后在外部燃烧和爆炸。羽流形貌有两种特征:一种是剧烈爆炸,产生蘑菇云状气体产物;而另一种未产生气状产物。前者的冲量和有效工作时间大于后者。 |
其他语种文摘
|
Combined with micro electro mechanical systems (MEMS),solid propellant micro-thruster can form array with gigantic unit number. This new thruster has great potential for micro/nano-satellite. For studying the operation performance of the thruster with nanothermite propellant,experiments were done at both atmospheric and vacuum conditions. Due to the continuous reaction between plume and the surround air,duration of plume emission is far longer than vacuum. Therefore,atmospheric test overestimates the effective time of thruster. For vacuum cases,the dynamic thrust characteristic and the effective time (about 250μs) were obtained,inferring the impulse about 55μN·s~80μN·s. Particle velocity of the plume is about 132m/s and the diameter of the influence range is about 30mm while streamwise length is about 70mm. These diagnoses indicate that the propellant was pushed out of the combustor by the base ignition before its explosion and combustion. Two plume characteristics were found in vacuum case,first had violent explosions and gas product like mushroom while the second without gas product. The impulse and effective time of the former characteristic are greater than the latter. |
来源
|
推进技术
,2019,40(4):945-952 【核心库】
|
DOI
|
10.13675/j.cnki.tjjs.180344
|
关键词
|
固体微推力器
;
纳米铝热剂
;
真空
;
动态测试
;
羽流
|
地址
|
1.
北京控制工程研究所, 北京, 100094
2.
中国科学院力学研究所, 高温气体动力国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航天(宇宙航行) |
基金
|
中国科学院科研仪器设备研制项目
|
文献收藏号
|
CSCD:6475155
|
参考文献 共
20
共1页
|
1.
Mueller J.
Thruster Options for Microspacecraft-A Review and Evaluation of Existing Hardware and Emerging Technologies. AIAA 97-3058
|
CSCD被引
1
次
|
|
|
|
2.
Lewis D H. Digital Micro Propulsion.
Twelfth IEEE International Conference,2000
|
CSCD被引
1
次
|
|
|
|
3.
Larangot B. Solid Propellant Micro Thruster: An Alternative Propulsion Device for Nanosatellite.
Aerospace Energetic Equipment,2002,22(1):12-14
|
CSCD被引
1
次
|
|
|
|
4.
Wu M H.
Development and Characterization of Ceramic Micro Chemical Propulsion and Combustion Systems. AIAA 2008-966
|
CSCD被引
1
次
|
|
|
|
5.
杨灵芝. MEMS固体微推力器阵列发展研究.
空间控制技术与应用,2016,42(1):13-19
|
CSCD被引
6
次
|
|
|
|
6.
Youngner D W. MEMS Mega-Pixel Micro-Thruster Arrays for Small Satellite Station Keeping.
The 14th Annual/USU Conference on Small Satellites,2000
|
CSCD被引
1
次
|
|
|
|
7.
Chaalane A.
Main Directions of Solid Propellant Micro-Propulsion Activity at LAAS. AIAA 2004-6706
|
CSCD被引
1
次
|
|
|
|
8.
Lee J. Design, Fabrication, and Testing of MEMS Solid Propellant Thruster Array Chip on Glass Wafer.
Sensors and Actuators A: Physical,2010,157(1):126-134
|
CSCD被引
14
次
|
|
|
|
9.
Zhang K. MEMS-Based Solid Propellant Microthruster Design, Simulation, Fabrication, and Testing.
Journal of Microelectromechanical Systems,2004,13(2):165-175
|
CSCD被引
13
次
|
|
|
|
10.
Zhang K L. A MEMS-Based Solid Propellant Microthruster with Au/Ti Igniter.
Sensor and Actuators A:Physical,2005,122(1):113-123
|
CSCD被引
18
次
|
|
|
|
11.
Orieux S. Thrust Stand for Ground Tests of Solid Propellant Microthrusters.
Review of Scientific Instruments,2002,73(7):2694-2698
|
CSCD被引
12
次
|
|
|
|
12.
Zheng Y. MEMS-Based Propulsion with Solid Propellant for Micro Satellite.
The 2nd International Conference on Recent Advances in Space Technologies,2005
|
CSCD被引
1
次
|
|
|
|
13.
徐超. MEMS固体微推进器中Cr薄膜点火电阻的研究.
传感技术学报,2006,19(5a):1411-1414
|
CSCD被引
14
次
|
|
|
|
14.
陈默.
基于MEMS的4×4微推进阵列制备及性能研究,2010
|
CSCD被引
2
次
|
|
|
|
15.
王成玲.
MEMS数字固体微推进器的制备与性能研究,2014
|
CSCD被引
1
次
|
|
|
|
16.
刘旭辉. 微型固体推力器阵列寻址点火控制系统研究.
固体火箭技术,2010,33(6):708-712
|
CSCD被引
2
次
|
|
|
|
17.
Tosin M. Solid Propellant Micro Thruster Design-A Brief Discussion about Its Viability and Applications.
CANEUS Conference on Micro-Nano-Technologies,2004
|
CSCD被引
1
次
|
|
|
|
18.
杨灵芝. MEMS固体微推力器阵列驱动控制系统设计与试验.
推进技术,2017,38(9):2115-2121
|
CSCD被引
1
次
|
|
|
|
19.
Rossi C. Micropropulsion for Space-A Survey of MEMS-Based Micro Thrusters and Their Solid Propellant Technology.
Advanced Micro-and Nanosystems,2015,10(1):257-292
|
CSCD被引
2
次
|
|
|
|
20.
Baijot V. Modeling the Pressure Generation in Aluminum-Based Thermites.
Propellants, Explosives, Pyrotechnics,2015,40(3):402-412
|
CSCD被引
3
次
|
|
|
|
|