基于大数据方法和SOFM聚类的中国经济-环境综合分区研究
China's Economic-environment Comprehensive Zoning Based on Big Data Method and SOFM Clustering
查看参考文献26篇
文摘
|
研究使用经济和环境多源大数据,建立包含人口、GDP等经济指标和空气质量等环境指标的中国经济-环境关联体系,识别各指标的热点、冷点时空变化特征,采用人工神经网络聚类方法对中国现阶段经济-环境进行综合分区。研究结果如下:①灯光平均强度较高的省份主要集中在沿海地区,经济以长三角、珠三角和环渤海区域为主要拉动引擎,呈东南高西北低的发展态势,东部沿海地区经济发展优于东北、中部和西南地区。 ② PM2.5浓度呈现先增后减趋势,高污染区主要集中在华北、华中等区域;东北方向逐步扩散,污染热点地区从辽东半岛、山海关一线向东北扩张;南方地区基本保持稳定态势。③采用自组织特征映射模型对2015年全国各地级市OLS灯光指数、人口、城市自然边界和年均PM2.5浓度4类指标进行聚类,第I类为经济极发达-环境恶化地区,主要位于华北平原和长江三角洲;第II类为经济发达-环境趋恶化地区,主要分布在第I类区域周边,特别是京津冀周边地区;第III类为经济发达-环境良好地区,广东、海南、江西、福建以及重庆等省市多属此类型;第IV类为经济不发达-环境优质地区,主要分布于东北地区北部、内蒙古、甘肃、贵州、新疆、青海、西藏等地。 |
其他语种文摘
|
In the past 40 years, China's economy has developed rapidly but has paid a heavy environmental cost. China's environment and economy have undergone tremendous changes. The imbalance in regional economic development has intensified, while the various kinds of environmental problems have taken place in different area. Therefore, it is necessary to formulate environmental policies in a targeted manner. To this end, big data methods should be applied to reveal the relationship between the environment and economy, which forms the basis of comprehensive zoning. In this study, multi-source big data such as nighttime light remote sensing, spatialized population data, urban natural boundary and simulated PM2.5 concentration was used to establish an economic-environmental linkage system. The time and spatial variation rules of economic and environment hotspots were identified by Getis-Ord index. The provincial administrative areas of China were divided into four groups by using an artificial neural network (Self-Organizing Feature Map, SOFM) clustering of both economic and environmental indicators. The results show that: 1) The provinces with higher average light intensity in China are mainly concentrated in coastal areas. The economy is mainly driven by the Yangtze River Delta, the Pearl River Delta, and the Bohai Rim. It is a developing trend that is low in the southeast, high in the northwest and the eastern coastal areas. The economic development of coastal area is superior to the northeast, central and southwest regions. 2) The concentration of PM2.5 in China shows a trend of increasing first and then decreasing. Highly polluted areas are mainly concentrated in the North China and Central China regions. In northeast China, the pollution hotspots expand from the Liaodong Peninsula and Shanhaiguan to the northeast, while the south China maintains stability. 3) Based on OLS light index, population, urban natural boundary, and annual average PM2.5 concentration in 2015, the prefecture-level cities can be grouped into four types by using the self-organizing feature mapping model. Type I region is highly economic developed and environment deteriorating areas, mainly located in the North China Plain and the Yangtze River Delta. Type II region is the economic developed and environment deteriorating areas, which is mainly distributed in the periphery of the Type I region, especially around Jing-jin-ji area. Type III region is economically developed and environmentally friendly, such as Guangdong, Hainan, Jiangxi, Fujian, and Chongqing. Type IV is economically underdeveloped and high environment quality areas, which are mainly distributed in the north of the Northeast, Inner Mongolia, Gansu, Guizhou, Xinjiang, Qinghai, and Tibet. The research results are hoped to provide reference for balancing economic development and environment conservation in different regions of China. |
来源
|
地理科学
,2019,39(2):242-251 【核心库】
|
DOI
|
10.13249/j.cnki.sgs.2019.02.008
|
关键词
|
经济-环境关联体系
;
夜间灯光指数
;
PM2.5
;
自组织特征映射模型(SOFM)
|
地址
|
1.
环境保护部环境规划院, 国家环境保护环境规划与政策模拟重点实验室, 北京, 100012
2.
中国地质大学(北京)土地科学技术学院, 北京, 100083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0690 |
学科
|
园艺 |
基金
|
国家环境保护环境规划与政策模拟重点实验室开放基金
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:6467703
|
参考文献 共
26
共2页
|
1.
周雅清. 城市化对华北地区最高、最低气温和日较差变化趋势的影响.
高原气象,2009,28(5):1158-1166
|
CSCD被引
49
次
|
|
|
|
2.
王芳. 根据卫星观测的城市用地变化估算中国1980~2009年城市热岛效应.
科学通报,2012,57(11):951-958
|
CSCD被引
16
次
|
|
|
|
3.
石忆邵. 中国"城市病"的测度指标体系及其实证分析.
经济地理,2014,34(10):1-6
|
CSCD被引
19
次
|
|
|
|
4.
周元. 中国城镇化道路的反思与对策.
中国人口·资源与环境,2012,22(4):56-59
|
CSCD被引
3
次
|
|
|
|
5.
李芬. 中日韩城市化过程中的资源环境变化比较研究.
中国人口·资源与环境,2015,25(4):125-131
|
CSCD被引
3
次
|
|
|
|
6.
张欢. 中国省域生态文明建设差异分析.
中国人口·资源与环境,2014,24(6):22-29
|
CSCD被引
27
次
|
|
|
|
7.
张荣天. 中国省际城镇化与生态环境的耦合协调与优化探讨.
干旱区资源与环境,2015,29(7):12-17
|
CSCD被引
24
次
|
|
|
|
8.
成金华. 中国生态文明发展水平的空间差异与趋同性.
中国人口·资源与环境,2015,177(5):1-9
|
CSCD被引
26
次
|
|
|
|
9.
杜祥琬. 中国经济发展与能源消费及碳排放解耦分析.
中国人口·资源与环境,2015,25(12):1-7
|
CSCD被引
10
次
|
|
|
|
10.
李福柱. 中国经济发展方式的转变动力及其作用途径.
中国人口·资源与环境,2016,26(2):152-162
|
CSCD被引
4
次
|
|
|
|
11.
Kitchin R. Big data, new epistemologies and paradigm shifts.
Big Data & Society,2014,1(1):1-12
|
CSCD被引
13
次
|
|
|
|
12.
Song M. Improving natural resource management and human health to ensure sustainable societal development based upon insights gained from working within'Big Data Environments'.
Journal of Cleaner Production,2015,94:1-4
|
CSCD被引
1
次
|
|
|
|
13.
Song M. Environmental performance evaluation with big data: theories and methods.
Annals of Operations Research,2016:1-14
|
CSCD被引
1
次
|
|
|
|
14.
Li L. Evaluation on China's forestry resources efficiency based on big data.
Journal of Cleaner Production,2016,142:513-523
|
CSCD被引
2
次
|
|
|
|
15.
Xie H. Exploring the factors influencing ecological land change for China's Beijing-Tianjin-Hebei Region using big data.
Journal of Cleaner Production,2017,142:677-687
|
CSCD被引
5
次
|
|
|
|
16.
Wu J. Exploring factors affecting the relationship between light consumption and GDP based on DMSP/OLS nighttime satellite imagery.
Remote Sensing of Environment,2013,134:111-119
|
CSCD被引
21
次
|
|
|
|
17.
李德仁. 论夜光遥感数据挖掘.
测绘学报,2015,44(6):591-601
|
CSCD被引
108
次
|
|
|
|
18.
Clark H.
Sala-i-Martin X, China's GDP growth may be understated,2018
|
CSCD被引
1
次
|
|
|
|
19.
李德仁. 基于夜光遥感影像的“一带一路”沿线国家城市发展时空格局分析.
武汉大学学报·信息科学版,2017,42(6):711-720
|
CSCD被引
58
次
|
|
|
|
20.
Dai Z. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels.
Sustainability,2017,9(2):305
|
CSCD被引
7
次
|
|
|
|
|