爆轰驱动高能起爆技术实验研究
Experimental research on high energy initiation technology for detonation driver
查看参考文献17篇
文摘
|
爆轰驱动激波风洞的驱动气体声速较高,擅长模拟高总温、高总压的试验气体.降低驱动气体声速会导致起始爆轰困难,因此在低总温、高总压气体模拟方面能力不足.本研究提出了一种新的高能起爆方法——封闭式点火管,在高浓度氮气稀释的氢氧混气中实现了起始爆轰,成功获得了低声速的驱动气体.通过实验明确了点火管起爆能量的主导因素,给出了封闭式点火管的设计原则.通过实验和计算明确了新方法对激波管/风洞流动过程的影响机理,据此提出了封闭式点火管的使用原则.利用这种新方法获得了低总温、高总压的试验气体,为拓展高超声速飞行条件地面试验能力提供了可行方法. |
其他语种文摘
|
A shock tunnel with gaseous detonation driver is fit for simulating test gas with high total temperature and pressure, since the sound speed of the driving gas is comparatively high. Decreasing the sound speed of the driving gas can lead to initial detonation difficulties and is therefore deficient in low total temperature and high total pressure gas simulations. In this study, a new high-energy detonation initiation method, the closed-type ignition tube, is proposed, in which initial detonation is achieved in high-concentration nitrogendiluted hydrogen-oxygen mixed gas and a low-sound speed driving gas is successfully obtained. By experiment, the dominant factors of igniter tube initiation energy are defined, and the design principles of closed igniter tube are given. Through experiments and calculation, the influence mechanism of the new method on the flow process of shock tubes/tunnels is clarified, and the principle of using the new initiation tube is identified. Using this new method, low total temperature and high total pressure test gas could be obtained, which provides a feasible method for expanding the ground test capability of hypersonic flight conditions. |
来源
|
中国科学. 技术科学
,2019,49(3):311-319 【核心库】
|
DOI
|
10.1360/n092018-00029
|
关键词
|
高超声速
;
爆轰
;
起爆
;
激波风洞
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7259 |
学科
|
航空 |
基金
|
国家自然科学基金项目
;
中国科学院“关键技术人才”项目资助
|
文献收藏号
|
CSCD:6465398
|
参考文献 共
17
共1页
|
1.
姜宗林. 长试验时间爆轰驱动激波风洞技术研究.
力学学报,2012,44:824-831
|
CSCD被引
35
次
|
|
|
|
2.
陈延辉. 日本自由活塞激波风洞HIEST概述.
飞航导弹,2014,8:84-90
|
CSCD被引
2
次
|
|
|
|
3.
王永寿. 纵涡导入型超燃冲压发动机工作特性的研究--利用高温激波风洞进行Ma=8燃烧试验.
飞航导弹,2006,4:48-61
|
CSCD被引
1
次
|
|
|
|
4.
张树道. 双燃式(超燃)冲压发动机中激波与边界层之间相互作用对内部流动的影响.
流体力学实验与测量,1999,2:17-22
|
CSCD被引
1
次
|
|
|
|
5.
李进平. 爆轰驱动激波管缝合激波马赫数计算.
空气动力学学报,2008,26:291-296
|
CSCD被引
13
次
|
|
|
|
6.
Miyajima H. Design concept of the NAL/NASDA high-enthalpy shock tunnel.
4th Int Workshop on Shock Tube Technologies,1994
|
CSCD被引
2
次
|
|
|
|
7.
Itoh K. Improvement of a free piston driver for a high-enthalpy shock tunnel.
Shock Waves,1998,8:215-233
|
CSCD被引
14
次
|
|
|
|
8.
Holden M S. LENS hypervelocity tunnels and application to vehicle testing at duplicated flight conditions, advanced hypersonic test facilities.
Advanced Hypersonic Test Facilities, Progress in Astronautics and Aeronautics,2002:73-110
|
CSCD被引
4
次
|
|
|
|
9.
Jiang Z. Theories and technologies for duplicating hypersonic flight conditions for ground testing.
Natl Sci Rev,2017,4:290-296
|
CSCD被引
10
次
|
|
|
|
10.
Anderson J D.
Hypersonic and High-Temperature Gas Dynamics. 2nd ed,2006
|
CSCD被引
15
次
|
|
|
|
11.
俞鸿儒. 大幅度延长激波风洞试验时间.
中国科学:物理学力学天文学,2015,45:094701
|
CSCD被引
3
次
|
|
|
|
12.
陈强.
激波管流动的理论和实验技术,1979:99
|
CSCD被引
1
次
|
|
|
|
13.
Gronig H. Development of a detonation driver for a shock tunnel.
Rev High Pressure Sci Tech,1998,7:879-884
|
CSCD被引
2
次
|
|
|
|
14.
Knystautas R. Direct initiation of spherical detonation by a hot turbulent gas jet.
Sympos (Int) Combust,1979,17:1235-1245
|
CSCD被引
2
次
|
|
|
|
15.
张欣玉. 氢氧爆轰直接起始的射流点火方法研究.
气动实验与测量控制,1996,2:63-68
|
CSCD被引
8
次
|
|
|
|
16.
胡宗民. 爆轰波在楔面上反射数值分析.
力学学报,2004,36:385-392
|
CSCD被引
11
次
|
|
|
|
17.
俞鸿儒. 扩张激波管流动波图观察.
空气动力学学报,1984,3:88-91
|
CSCD被引
2
次
|
|
|
|
|