帮助 关于我们

返回检索结果

离轴石英谐振光声光谱CO_2传感研究
Detection of carbon dioxide based off-beam quartz enhanced photoacoustic spectroscopy

查看参考文献27篇

周彧 1,2   刘锟 1   高晓明 1 *  
文摘 二氧化碳(CO_2)不仅是一种重要的温室气体,也是具有危害性的窒息性气体,因此发展小型化、高灵敏度的CO_2浓度传感器对无人机载、探空球等探测大气CO_2以及在空间封闭环境的CO_2浓度监测等领域具有较大的应用需求。开展了基于2.0 µm可调谐半导体激光器的CO_2传感研究,搭建了CO_2探测实验系”统。系统以4989.97 cm~(-1)处的CO_2吸收谱线为研究对象,采用微小型离轴石英音叉增强型光声光谱新技术对CO_2气体传感进行研究。通过优化调制频率和调制振幅等参数,确定了CO_2传感系统的最佳参数。在最优实验参数条件下对CO_2气体进行探测,获得系统的最小探测灵敏度为142 µL/L,最小归一化等效噪声吸收系数为3.37×10~(-8) cm~(-1)W/Hz~(1/2).
其他语种文摘 Carbon dioxide (CO_2) is not only an important greenhouse gas, but also a harmful asphyxiating gas. Therefore, the development of miniaturized, high-sensitivity concentration sensor of CO_2 has great application requirements for detecting atmospheric CO_2 by unmanned aerial vehicles, sounding balloons, and monitoring CO_2 concentration in space-enclosed environments. An experimented setup based on 2.0 μm tunable semiconductor laser was established for the detection of CO_2 concentration. The CO_2 absorption line at 4989.97 cm~(-1) was chosen as the target line, and the CO_2 gas sensing was carried out using microminiature off-beam quartz enhanced photoacoustic spectroscopy. By detecting the photoacoustic signals of a certain concentration of CO_2 at different modulation frequencies and modulation amplitudes, the optimal modulation frequency and modulation amplitude of the system were obtained. The CO_2 gas is detected under the optimized parameters,a detection limit of 142 μL/L is achieved, which corresponds to a normalized noise equivalent absorption coefficient of 3.37× 10~(-8)cm~(-1)W/Hz~(1/2).
来源 量子电子学报 ,2019,36(2):137-142 【扩展库】
DOI 10.3969/j.issn.1007-5461.2019.02.002
关键词 光谱学 ; 灵敏度 ; 石英音叉光声光谱 ; 二氧化碳
地址

1. 中国科学院安徽光学精密机械研究所, 安徽, 合肥, 230031  

2. 中国科学技术大学, 安徽, 合肥, 230026

语种 中文
文献类型 研究性论文
ISSN 1007-5461
学科 物理学
基金 国家重点研发计划 ;  国家自然科学基金
文献收藏号 CSCD:6464309

参考文献 共 27 共2页

1.  Bozoki Z. Photoacoustic instruments for practical applications: present, potentials, and future challenges. Applied Spectroscopy Reviews,2011,46(1):1-37 被引 14    
2.  Meyer P L. Atmospheric pollution monitoring using CO_2-laser photoacoustic spectroscopy and other techniques. Review of Scientific Instruments,1990,61(7):1779-1807 被引 9    
3.  Narasimhan L R. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proceedings of the National Academy of Sciences of the United States of America,2001,98(8):4617-4621 被引 10    
4.  Zhao Junjuan. Detection of CO_2 in the spherical photoacoustic cell. 传感技术学报,2012,25(3):289-292 被引 1    
5.  Liu Qiang. Measurements of atmospheric aerosol optical absorption coefficients using photoacoustic spectrometer. 红外与激光工程,2014,43(9):3010-3014 被引 1    
6.  Zha Shenlong. Application of photoacoustic spectroscopy in multi-component gas concentration detection. 光子学报,2017,46(6):0612002 被引 1    
7.  Liu Kun. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation. Review of Scientific Instruments,2010,81(10):103103 被引 8    
8.  Zhou Yu. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser. 物理学报,2018,67(8):084201 被引 2    
9.  Zha Shenlong. Acetylene detection based on resonant high sensitive photoacoustic spectroscopy. 光谱学与光谱分析,2017,37(9):2673-2678 被引 3    
10.  Chen Ying. Detection technique of ethylene based on photoacoustic spectroscopy. 中国激光,2017,44(5):0511001 被引 3    
11.  Laurila T. Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. Optics Express,2005,13(7):2453-2458 被引 2    
12.  Kosterev A A. Quartz-enhanced photoacoustic spectroscopy. Optics Letters,2002,27(21):1902-1904 被引 60    
13.  Liu Kun. Multi-resonator photoacoustic spectroscopy. Sensors and Actuators B: Chemical,2017,251:632-636 被引 17    
14.  Yi Hongming. Application of broadband blue laser diode to trace NO_2 detection using off-beam quartz-enhanced photoacoustic spectroscopy. Optics Letters,2011,36(4):481-483 被引 12    
15.  Wang Guishi. Research on the real-time measurement system based on QEPAS. 物理学报,2012,61(12):120701 被引 3    
16.  Yi Hongming. T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38-µm antimonide-distributed feedback laser diode. Applied Physics B,2014,116(2):423-428 被引 2    
17.  Ma Yufei. Research on high sensitive detection of HC1 trace gas based on QEPAS technology. 光谱学与光谱分析,2017,37(4):1033-1036 被引 1    
18.  Hu Libing. Research on detecting CO with quartz enhanced photoacoustic spectroscopy based on 2.33pm distributed feedback laser. 激光与光电子学进展,2015,52:053002 被引 1    
19.  Ma Y. QEPAS based ppb-level detection of CO and N_2O using a high power CW DFB-QCL. Optics. Express,2013,21(1):1008-1019 被引 13    
20.  Tan Tu. Research on high sensitivity measurement of N_2O and CO based on MIR-QCL and novel compact multi-pass gas cell. 光学学报,2015,35(2):0230005 被引 1    
引证文献 1

1 马凤翔 基于光纤光声传感的油中溶解气体分析系统 量子电子学报,2023,40(4):597-605
被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号