战略性关键金属矿产资源:现状与问题
Critical metal mineral resources:current research status and scientific issues
查看参考文献23篇
文摘
|
以稀有、稀散和稀土元素为主体的战略性关键金属矿产资源,在新材料、新能源和信息技术等新兴产业具有不可替代的重大用途。近年来,美欧等发达经济体先后制定了各自的关键矿产资源发展战略。未来几十年,世界主要国家将会为这些资源的持续安全供给进行不懈努力。本文扼要总结了战略性关键金属矿产资源的基本特征为“稀”、“伴”和“细”;提出关键金属矿床的五种主要类型,即花岗岩-伟晶岩型、碱性岩-碳酸岩型、镁铁质-超镁铁质岩型、热液贱金属硫化物型和风化-沉积型;建议应重点关注的关键科学问题为关键金属元素多圈层循环与超常富集机理以及关键金属元素赋存状态与高效清洁利用。 |
其他语种文摘
|
The strategic critical mineral resources,which are mainly rare metals,rare disperse elements and rare earth elements,have irreplaceable and significant uses in emerging industries such as new materials,new energy and information technology.In recent years,developed economies such as the United States and Europe have successively formulated their own critical mineral resources development strategies.In the coming decades,the world's major countries will make unremitting efforts for the continued and safe supply of these critical resources.This paper summarizes the basic characteristics of strategic critical mineral resources as “thin”,“companion” and “fine”.Five major ore deposit types are proposed,including the granite-pegmatite type,alkaline rock-carbonate type,mafic-ultramafic rock type,hydrothermal base metal sulfide type and weathering-sedimentary type.The key scientific issues that should be focused on include the multiple earth sphere cycling and super-enrichment mechanism of the critical metal elements,as well as the occurrence and clean utilization of the critical metal elements. |
来源
|
中国科学基金
,2019,33(2):106-111 【扩展库】
|
关键词
|
关键矿产资源
;
基本特征
;
矿床类型
;
科学问题
;
基础研究
|
地址
|
1.
中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京, 100029
2.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
3.
中国地质大学(武汉)资源学院, 紧缺战略矿产资源协同创新中心;;地质过程与矿产资源国家重点实验室, 武汉, 430074
4.
中国地质调查局,成都地质调查中心, 成都, 610081
5.
南京大学地球科学与工程学院, 内生金属成矿机制国家重点实验室, 南京, 210023
6.
中国地质科学院矿产资源研究所, 北京, 100037
7.
中国科学院过程工程研究所, 北京, 100080
8.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-8217 |
文献收藏号
|
CSCD:6454568
|
参考文献 共
23
共2页
|
1.
Gulley A L. China, the United States, and competition for resources that enable emerging technologies.
PNAS,2018,115(16):4111-4115
|
CSCD被引
10
次
|
|
|
|
2.
European Union.
Report on critical raw materials and the circular economy:2018
|
CSCD被引
1
次
|
|
|
|
3.
U. S. Department of the Interior and U. S. Geological Survey.
Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply. USGS Professional Paper 1802,2017
|
CSCD被引
2
次
|
|
|
|
4.
涂光炽.
分散元素地球化学及成矿机制,2004
|
CSCD被引
39
次
|
|
|
|
5.
London D. Rare-element Granitic Pegmatites.
Rare Earth and Critical Elements in Major Deposit Types, Reviews in Economic Geology. Society of Economic Geologists. 18,2016:165-193
|
CSCD被引
1
次
|
|
|
|
6.
Zhou M F. Introduction to the special issue of Mesozoic W-Sn deposits in South China.
Ore Geology Reviews,2018,101:432-436
|
CSCD被引
14
次
|
|
|
|
7.
吴福元. 高分异花岗岩的识别与研究.
中国科学:地球科学,2017,47(7):745-765
|
CSCD被引
285
次
|
|
|
|
8.
Hu R Z. Multiple Mesozoic mineralization events in South China-an introduction to the thematic issue.
Mineralium Deposita,2012,47(6):579-588
|
CSCD被引
130
次
|
|
|
|
9.
Mao J W. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings.
Mineralium Deposita,2013,48:267-294
|
CSCD被引
254
次
|
|
|
|
10.
Guo N X. Magmatic evolution and W-Sn-U-Nb-Ta mineralization of the Mesozoic Jiulongnao granitic complex, Nanling Range, South China.
Ore Geology Reviews,2018,94:414-434
|
CSCD被引
8
次
|
|
|
|
11.
Wang R C. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay # 3 pegmatite (Altai, NW China).
European Journal of Mineralogy,2009,21:795-809
|
CSCD被引
38
次
|
|
|
|
12.
Song W L. Genesis of the world's largest rare earth element deposit, Bayan Obo,China: Protracted mineralization evolution over similar to 1 b. y.
Geology,2018,46:323-326
|
CSCD被引
26
次
|
|
|
|
13.
Kynicky J. Diversity of Rare Earth Deposits: The Key Example of China.
Elements,2012,8:361-367
|
CSCD被引
35
次
|
|
|
|
14.
Naldrett A J. Secular variation of magmatic sulfide deposits and their source magmas.
Economic Geology,2010,105:669-688
|
CSCD被引
36
次
|
|
|
|
15.
Song X Y. The giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun orogenic belt, northern Tibet Plateau, China.
Economic Geology,2016,111:29-55
|
CSCD被引
67
次
|
|
|
|
16.
陈艳虹. 豆荚状铬铁矿床研究回顾与展望.
地球科学,2018,43(4):991-1010
|
CSCD被引
15
次
|
|
|
|
17.
Benson T R. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins.
Nature Communications,2017,8:270
|
CSCD被引
50
次
|
|
|
|
18.
Xu C. Origin of heavy rare earth mineralization in South China.
Nature Communications,2017,8:4598
|
CSCD被引
2
次
|
|
|
|
19.
Kato Y. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements.
Nature Geoscience,2011,4(8):535-539
|
CSCD被引
90
次
|
|
|
|
20.
韦振权. 大洋富钴结壳资源调查与研究进展.
中国地质,2017,44(3):460-472
|
CSCD被引
16
次
|
|
|
|
|