基于镀银纱线的电加热织物温度场模拟与电热性能
Electric heating fabrics based on silver yarns and simulation of temperature field
查看参考文献21篇
文摘
|
运用ANSYS有限元模拟软件对镀银纱线在织物中加热过程进行数值模拟,并通过调整镀银纱线之间的距离和施加电压分析不同条件下加热织物内部和周围空气中热场分布情况。根据模拟结果制备镀银纱线加热织物,验证模拟结果并研究电加热织物电热性能。结果表明,随着电压的增加,镀银纱线平衡温度升高,当输出电压为7V时,镀银纱线在织物中实测温度可达109.7℃。设定镀银纱线间距为3mm,使镀银纱线在较低成本下获得较高的表面温度均匀性。加热织物的升温速度和平衡温度随着功率密度的增加而增加,模拟结果与实测结果趋势一致且结果偏差小于4.5%,说明有限元分析结果能够作为镀银纱线加热织物制备的重要参考依据。 |
其他语种文摘
|
ANSYS finite element simulation software was used to simulate the heating process of silver coated yarns in fabric.The thermal filed distribution of heating fabric in different condition was analyzed by adjusting the distance between the silver coated yarns and output voltage.The heating fabric was prepared by the results of finite element simulation.The electrical heating property of heating fabric was researched and contrast with the results of finite element simulation.The result shows that,the equilibrium temperature of silver coated yarns rise with the increase of output voltage.The temperature is 109.7℃ by the output voltage is 7V.The distance of silver coated yarn in fabric is 3 mm,which makes the surface temperature of heating uniform while the cost of silver coated yarns is lower.The equilibrium temperature and the heating speed rise with the increase of power density. The results of simulation are consistent with the actual results and the deviation is less than 4.5%. The results of finite element simulation can be important reference to guide the fabrication of heating fabric based on silver coated yarns. |
来源
|
材料工程
,2019,47(2):68-75 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2017.001010
|
关键词
|
有限元模拟
;
镀银纱线
;
柔性加热织物
;
电热性能
;
红外温度图像
|
地址
|
天津工业大学纺织学院, 天津, 300387
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
轻工业、手工业、生活服务业 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6449868
|
参考文献 共
21
共2页
|
1.
Wang F. A review of technology of personal heating garments.
International Journal of Occupational Safety &Ergonomics Jose,2010,16(3):387-404
|
CSCD被引
10
次
|
|
|
|
2.
Chugh R. Flexible graphite as a heating element.
Carbon,2002,40(13):2285-2289
|
CSCD被引
1
次
|
|
|
|
3.
Kayacan O. Implementation of steel-based fabric panels in a heated garment design.
Textile Research Journal,2009,79(16):1427-1437
|
CSCD被引
6
次
|
|
|
|
4.
Ding J T F. Temperature effect on the conductivity of knitted fabrics embedded with conducting yarns.
Textile Research Journal,2014,84(17):1849-1857
|
CSCD被引
3
次
|
|
|
|
5.
An J E. Structure and electric heating performance of graphene/epoxy composite films.
European Polymer Journal,2013,49(6):1322-1330
|
CSCD被引
10
次
|
|
|
|
6.
Chu K. Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance.
IEEE Electron Device Letters,2014,36(1):50-52
|
CSCD被引
1
次
|
|
|
|
7.
Bhat N V. Development of conductive cotton fabrics for heating devices.
Journal of Applied Polymer Science,2006,102(5):4690-4695
|
CSCD被引
6
次
|
|
|
|
8.
Lee J Y. Polypyrrole-coated woven fabric as a flexible surface-heating element.
Macromolecular Research,2003,11(6):481-487
|
CSCD被引
6
次
|
|
|
|
9.
Li L. Wearable electronic design:electrothermal properties of conductive knitted fabrics.
Textile Research Journal,2014,84(5):477-487
|
CSCD被引
1
次
|
|
|
|
10.
Chen H C. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation.
Journal of Materials Processing Tech,2009,184(1):124-130
|
CSCD被引
11
次
|
|
|
|
11.
Cheng K B. Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics.
Composites Part A Applied Science & Manufacturing,2003,34(10):971-978
|
CSCD被引
1
次
|
|
|
|
12.
张洪艳. 新型导电填料——纳米石墨微片.
塑料,2006,35(4):42-45
|
CSCD被引
12
次
|
|
|
|
13.
杨景发. 板式电热膜加热元件的制备及应用.
红外技术,2011,33(11):678-681
|
CSCD被引
4
次
|
|
|
|
14.
Baltusnikaite J. Influence of silver coated yarn distribution on electrical and shielding properties of flax woven fabrics.
Fibres &Textiles in Eastern Europe,2014,22(2):84-90
|
CSCD被引
1
次
|
|
|
|
15.
施立佳. 嵌织镀银纤维涤纶织物的抗静电性能研究.
浙江理工大学学报,2009,26(6):846-849
|
CSCD被引
1
次
|
|
|
|
16.
Pollini M. Characterization of antibacterial silver coated yarns.
Journal of Materials Science Materials in Medicine,2009,20(11):2361-2366
|
CSCD被引
1
次
|
|
|
|
17.
陈莉. 镀银长丝针织物的结构及其导电发热性能.
纺织学报,2013,34(10):52-56
|
CSCD被引
10
次
|
|
|
|
18.
陈莉. 可加热纬编针织物的电热性能.
纺织学报,2015,36(4):50-54
|
CSCD被引
6
次
|
|
|
|
19.
Hachem E. Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method.
International Journal for Numerical Methods in Fluids,2015,68(1):99-121
|
CSCD被引
2
次
|
|
|
|
20.
孙颖迪. AZ31镁合金管材挤压成型数值模拟与实验研究.
材料工程,2017,45(6):1-7
|
CSCD被引
1
次
|
|
|
|
|