锂离子电池硅基负极界面反应的研究进展
Research progress on interface reaction of silicon-based anode for lithium-ion battery
查看参考文献66篇
文摘
|
硅作为一种极具潜力的锂离子电池负极材料,已引起研究者的广泛关注。然而硅材料储锂过程中伴随着巨大的体积变化,导致电极/电解液界面不稳定,是限制硅电极商业化的主要因素之一。深入了解硅负极的界面反应机理,有助于改善硅负极的界面性质,进而提高硅负极的电化学性能。本文综述了硅负极界面反应的演化机制,包括Li-Si合金化过程、硅表面氧化硅的反应和表面纯化膜的形成,并讨论了其对硅电化学性能的影响。 |
其他语种文摘
|
As an attractive candidate for anode materials,silicon has attracted extensive attention.The instability of electrode/electrolyte interphase due to the inherent volume variation upon(de)lithiation is one of the major factors that limit the commercialization of Si materials.The in-depth understanding of the interface reaction of Si is helpful to modify the interface properties of Si,and further improve the electrochemical performance.This review summarizes the research on the interface reaction mechanism of Si during(de)lithiation process,including Li-Si alloying process,the reactions of primary oxide layer and the formation of passivation film on the Si surface.Moreover,the effect of the three processes on the Si electrochemical performance are also discussed. |
来源
|
材料工程
,2019,47(2):11-25 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2018.000450
|
关键词
|
锂离子电池
;
硅负极
;
Li-Si合金化
;
氧化硅
;
钝化膜
|
地址
|
1.
北京有色金属研究总院, 北京, 100088
2.
国联汽车动力电池研究院有限责任公司, 北京, 100088
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学;电工技术 |
基金
|
国家自然科学基金
;
北京市科技新星计划项目
;
国家自然科学基金青年科学基金
|
文献收藏号
|
CSCD:6449861
|
参考文献 共
66
共4页
|
1.
Wen C J. Chemical diffusion in intermediate phases in the lithium-silicon system.
Journal of Solid State Chemistry,1981,37(3):271-278
|
CSCD被引
13
次
|
|
|
|
2.
Obrovac M N. Structural changes in silicon anodes during lithium insertion/extraction.
Electrochemical and Solid State Letters,2004,7(5):A93-A96
|
CSCD被引
65
次
|
|
|
|
3.
Hatchard T D. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon.
Journal of the Electrochemical Society,2004,151(6):A838-A842
|
CSCD被引
38
次
|
|
|
|
4.
Obrovac M N. Reversible cycling of crystalline silicon powder.
Journal of the Electrochemical Society,2007,154(2):A103-A108
|
CSCD被引
42
次
|
|
|
|
5.
Ding N. Determination of the diffusion coefficient of lithium ions in nano-Si.
Solid State Ionics,2009,180(2/3):222-225
|
CSCD被引
23
次
|
|
|
|
6.
Xie J. Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering:a comparison of using liquid and polymer electrolytes.
Materials Chemistry and Physics,2010,120(2/3):421-425
|
CSCD被引
6
次
|
|
|
|
7.
Philippe B. Role of the LiPF_6salt for the long-term stability of silicon electrodes in Li-ion batteries-aphotoelectron spectroscopy study.
Chemistry of Materials,2013,25(3):394-404
|
CSCD被引
9
次
|
|
|
|
8.
Pharr M. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-Ion batteries.
Nano Letters,2012,12(9):5039-5047
|
CSCD被引
8
次
|
|
|
|
9.
Fu K. Aligned carbon nanotube-silicon sheets:a novel nano-architecture for flexible lithium ion battery electrodes.
Advanced Materials,2013,25(36):5109-5114
|
CSCD被引
7
次
|
|
|
|
10.
Fu K. Chamber-confined siliconcarbon nanofiber composites for prolonged cycling life of Li-ion batteries.
Nanoscale,2014,6(13):7489-7495
|
CSCD被引
2
次
|
|
|
|
11.
Cao C. In-situstudy of silicon electrode lithiation with X-ray reflectivity.
Nano Letters,2016,16(12):7394-7401
|
CSCD被引
2
次
|
|
|
|
12.
Philippe B. Nanosilicon electrodes for lithium-ion batteries:interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy.
Chemistry of Materials,2012,24(6):1107-1115
|
CSCD被引
14
次
|
|
|
|
13.
Zhang W J. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries.
Journal of Power Sources,2011,196(3):877-885
|
CSCD被引
23
次
|
|
|
|
14.
Anani A. Multinary alloy electrodes for solid state batteries I A phase diagram approach for the selection and storage properties determination of candidate electrode materials.
Journal of Power Sources,1992,38(3):351-362
|
CSCD被引
8
次
|
|
|
|
15.
Amezawa K. Single-electrode Peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt.
Journal of the Electrochemical Society,1998,145(6):1986-1993
|
CSCD被引
9
次
|
|
|
|
16.
Boukamp B A. All-solid lithium electrodes with mixed-conductor matrix.
Journal of the Electrochemical Society,1981,128(4):725-729
|
CSCD被引
51
次
|
|
|
|
17.
Wu H. Designing nanostructured Si anodes for high energy lithium ion batteries.
Nano Today,2012,7(5):414-429
|
CSCD被引
146
次
|
|
|
|
18.
Ogata K. Revealing lithiumsilicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy.
Nature Communications,2014,5(5):3217-3228
|
CSCD被引
15
次
|
|
|
|
19.
Park C M. Li-alloy based anode materials for Li secondary batteries.
Chemical Society Reviews,2010,39(8):3115-3141
|
CSCD被引
83
次
|
|
|
|
20.
Shimizu M. Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using raman microspectroscopy.
Journal of Physical Chemistry C,2015,119(6):2975-2982
|
CSCD被引
4
次
|
|
|
|
|