地理大数据挖掘的本质
Principle of big geodata mining
查看参考文献81篇
文摘
|
针对地理大数据的内在本质以及地理大数据挖掘对于地理学研究的意义,本文解释了地理大数据的含义,并在大数据“5V”特征的基础上提出了粒度、广度、密度、偏度和精度等“5度”的特征,揭示了地理大数据的本质特点。在此基础上,从地理大数据的表达方式、地理大数据挖掘的目标、地理模式的叠加与尺度性、地理大数据挖掘与地理学的关系等4个方面阐述了地理大数据挖掘的本质与作用,并从挖掘目标的角度对地理大数据挖掘方法进行分类。未来地理大数据挖掘的研究将面临地理大数据的聚合、挖掘结果的有效性评价以及发现有价值的知识而非常识等几方面的挑战。 |
其他语种文摘
|
This paper reveals the principle of geographic big data mining and its significance to geographic research. In this paper, big geodata are first categorized into two domains: earth observation big data and human behavior big data. Then, another five attributes except for "5V",including granularity, scope, density, skewness and precision, are summarized regarding big geodata. Based on this, the essence and effect of big geodata mining are uncovered by the following four aspects. First, as the burst of human behavior big data, flow space, where the OD flow is the basic unit instead of the point in traditional space, will become a new presentation form for big geodata. Second, the target of big geodata mining is defined as revealing the spatial pattern and the spatial relationship. Third, spatio-temporal distributions of big geodata can be seen as the overlay of multiple geographic patterns and the patterns may be changed with scale. Fourth, big geodata mining can be viewed as a tool for discovering geographic patterns while the revealed patterns are finally attributed to the outcome of humanland relationship. Big geodata mining methods are categorized into two types in light of mining target, i.e. classification mining and relationship mining. The future research will be facing the following challenges, namely, the aggregation and connection of big geodata, the effective evaluation of mining result and mining "true and useful" knowledge. |
来源
|
地理学报
,2019,74(3):586-598 【核心库】
|
DOI
|
10.11821/dlxb201903014
|
关键词
|
空间模式
;
空间关系
;
空间分布
;
流空间
;
时空异质性
;
知识发现
|
地址
|
1.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6447518
|
参考文献 共
81
共5页
|
1.
李德仁. 从GIS数据库中发现知识.
测绘学报,1995,24(1):37-44
|
CSCD被引
27
次
|
|
|
|
2.
Harvey J M.
Geographic Data Mining and Knowledge Discovery,2009
|
CSCD被引
3
次
|
|
|
|
3.
Song C. Limits of predictability in human mobility.
Science,2010,327(5968):1018-1021
|
CSCD被引
104
次
|
|
|
|
4.
Ginsberg J. Detecting influenza epidemics using search engine query data.
Nature,2009,457(7232):1012-1015
|
CSCD被引
154
次
|
|
|
|
5.
Silver D. Mastering the game of Go with deep neural networks and tree search.
Nature,2016,529(7587):484-489
|
CSCD被引
754
次
|
|
|
|
6.
Silver D. Mastering the game of Go without human knowledge.
Nature,2017,550(7676):354-359
|
CSCD被引
422
次
|
|
|
|
7.
Mayer-Schonberger V.
Big Data:A Revolution That Will Transform How We Live, Work, and Think,2013
|
CSCD被引
6
次
|
|
|
|
8.
Marr B.
Big Data:Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance,2015
|
CSCD被引
1
次
|
|
|
|
9.
刘瑜. 社会感知视角下的若干人文地理学基本问题再思考.
地理学报,2016,71(4):564-575
|
CSCD被引
49
次
|
|
|
|
10.
Liu Z. Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records.
Transactions in GIS,2018,22(2):494-513
|
CSCD被引
5
次
|
|
|
|
11.
Zheng Y. Urban computing with taxicabs.
Proceedings of the 13th International Conference on Ubiquitous Computing,2011:89-98
|
CSCD被引
19
次
|
|
|
|
12.
Castro P S. Urban traffic modelling and prediction using large scale taxi GPS traces.
Proceeding of Pervasive'12 Proceedings of the 10th International Conference on Pervasive Computing,2012:57-72
|
CSCD被引
1
次
|
|
|
|
13.
Kong X. Urban traffic congestion estimation and prediction based on floating car trajectory data.
Future Generation Computer Systems:The International Journal of EScience,2016,61:97-107
|
CSCD被引
7
次
|
|
|
|
14.
Niu N. Integrating multi-source big data to infer building functions.
International Journal of Geographical Information Science,2017,31(9):1871-1890
|
CSCD被引
8
次
|
|
|
|
15.
Newing A. The role of digital trace data in supporting the collection of population statistics-the case for smart metered electricity consumption data.
Population, Space and Place,2016,22(8):849-863
|
CSCD被引
2
次
|
|
|
|
16.
NASA.
New night lights maps open up possible real-time applications,2017
|
CSCD被引
2
次
|
|
|
|
17.
Chen J. China:Open access to Earth land-cover map.
Nature,2015,514(7523):434
|
CSCD被引
5
次
|
|
|
|
18.
刘洋. 基于LTDR AVHRR和MODIS观测的全球长时间序列叶面积指数遥感反演.
地球信息科学学报,2015,17(11):1304-1312
|
CSCD被引
7
次
|
|
|
|
19.
Oliver M A. Kriging:A method of interpolation for geographical information systems.
International Journal of Geographical Information System,1990,4(3):313-332
|
CSCD被引
105
次
|
|
|
|
20.
Stein M L.
Interpolation of Spatial Data:Some Theory for Kriging,2012
|
CSCD被引
3
次
|
|
|
|
|