1982-2013年中国植被NDVI空间异质性的气候影响分析
Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013
查看参考文献40篇
文摘
|
为研究气候变化与植被活动之间的复杂关系,采用1982-2013年GIMMS NDVI与气象站点温度与水分的监测资料,应用基于像元的地理加权回归方法,探究了中国植被NDVI及其动态特征对气候变化响应的空间格局。中国植被NDVI与地表温度呈空间非平稳关系,在空间上的负相关关系主要集中在东北、西北及东南部分地区,空间正相关则更为集中和连片;针对不同气候指标的标准化系数对比可知,植被NDVI受水分控制作用较为显著的区域主要集中在北方地区以及青藏高原,温度的主导作用区域则分布在华东、华中及西南地区,其中年均最高气温对NDVI的主导区域范围最广;植被NDVI动态与气候变率的回归结果表明,增温速率的升高会通过加剧干旱等机制对植被活动产生抑制作用,水分变率对植被活动的强弱起到了重要的调节作用。 |
其他语种文摘
|
Climate change is a major driver of vegetation activity, and thus its complex processes become a frontier and difficulty in global change research. To understand the complex relationship between climate change and vegetation activity, the spatial distribution and dynamic characteristics of the response of NDVI to climate change from 1982 to 2013 in China were investigated by the geographically weighted regression (GWR) model. The GWR was run based on the combined datasets of satellite vegetation index (GIMMS NDVI) and climate observation (temperature and moisture) from meteorological stations nationwide. The results noted that the spatial non-stationary relationship between NDVI and surface temperature has appeared in China. The significant negative temperature- vegetation relationship was distributed in northeast, northwest and southeast parts of the country, while the positive correlation was more concentrated from southwest to northeast. And then, by comparing the normalized regression coefficients for different climate factors, regions with moisture dominants for NDVI were observed in North China and the Tibetan Plateau, and regions with temperature dominants for NDVI were distributed in the East, Central and Southwest China, where the annual mean maximum temperature accounts for the largest areas. In addition, regression coefficients between NDVI dynamics and climate variability indicated that the higher warming rate could result in the weakened vegetation activity through some mechanisms such as enhanced drought, while the moisture variability could mediate the hydrothermal conditions for the variation of vegetation activity. When the increasing rate of photosynthesis exceeded that of respiration, there was a positive correlation between vegetation dynamics and climate variability. However, the continuous and dynamic responding process of vegetation activity to climate change will be determined by spatially heterogeneous conditions in climate change and vegetation cover. Furthermore, the description of climate- induced vegetation activity from its rise to decline in different regions is expected to provide a scientific basis for initiating ecosystem-based adaptation strategies in response to global climate change. |
来源
|
地理学报
,2019,74(3):534-543 【核心库】
|
DOI
|
10.11821/dlxb201903010
|
关键词
|
NDVI
;
气候变化
;
空间异质性
;
地理加权回归
;
中国
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京, 100101
2.
中国科学院沈阳应用生态研究所, 中国科学院森林生态与管理重点实验室, 沈阳, 110016
3.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
基金
|
国家自然科学基金项目
;
中国科学院战略性先导科技专项
;
国家973计划
;
国家重点研发计划课题
|
文献收藏号
|
CSCD:6447514
|
参考文献 共
40
共2页
|
1.
Wang Q. Grassland coverage changes and analysis of the driving forces in Maqu County.
Physics Procedia,2012,33:1292-1297
|
CSCD被引
30
次
|
|
|
|
2.
傅伯杰. 中国生物多样性与生态系统服务评估指标体系.
生态学报,2017,37(2):341-348
|
CSCD被引
134
次
|
|
|
|
3.
Gao J B. Past and future effects of climate change on spatially heterogeneous vegetation activity in China.
Earth' s Future,2017,5(7):679-692
|
CSCD被引
14
次
|
|
|
|
4.
Fang J Y. Why are East Asian ecosystems important for carbon cycle research?.
Science China-Life Sciences,2010,53(7):753-756
|
CSCD被引
10
次
|
|
|
|
5.
Fang J Y. Increasing terrestrial vegetation activity in China, 1982-1999.
Science in China Series C:Life Sciences,2004,47(3):229-240
|
CSCD被引
64
次
|
|
|
|
6.
Andrew R L. Large-scale vegetation responses to terrestrial moisture storage changes.
Hydrology and Earth System Sciences,2017,21(9):4469-4478
|
CSCD被引
6
次
|
|
|
|
7.
Zhao M S. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.
Science,2010,329(5994):940-943
|
CSCD被引
131
次
|
|
|
|
8.
Jiang L L. Vegetation dynamics and responses to climate change and human activities in Central Asia.
Science of the Total Environment,2017,599:967-980
|
CSCD被引
56
次
|
|
|
|
9.
丁永建. 地表过程研究进展与趋势.
地球科学进展,2013,28(4):407-419
|
CSCD被引
19
次
|
|
|
|
10.
Levine J M. Ecology:A trail map for trait-based studies.
Nature,2015,529(7585):163-164
|
CSCD被引
8
次
|
|
|
|
11.
Krishnaswamy J. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
Global Change Biology,2014,20(1):203-215
|
CSCD被引
18
次
|
|
|
|
12.
周广胜.
中国植被/陆地生态系统对气候变化的适应性与脆弱性,2015
|
CSCD被引
11
次
|
|
|
|
13.
Del Grosso S. Global potential net primary production predicted from vegetation class, precipitation, and temperature.
Ecology,2008,89(8):2117-2126
|
CSCD被引
43
次
|
|
|
|
14.
Zeppel M J B. Impacts of extreme precipitation and seasonal changes in precipitation on plants.
Biogeosciences,2014,11(11):3083-3093
|
CSCD被引
23
次
|
|
|
|
15.
Seddon A W R. Sensitivity of global terrestrial ecosystems to climate variability.
Nature,2016,531(7593):229-243
|
CSCD被引
57
次
|
|
|
|
16.
Baez S. Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities.
Oecologia,2013,172(4):1117-1127
|
CSCD被引
27
次
|
|
|
|
17.
杜加强. 黄河上游不同干湿气候区植被对气候变化的响应.
植物生态学报,2011,35(11):1192-1201
|
CSCD被引
16
次
|
|
|
|
18.
Hoover D L. Resistance and resilience of a grassland ecosystem to climate extremes.
Ecology,2014,95(9):2646-2656
|
CSCD被引
30
次
|
|
|
|
19.
Peng S S. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation.
Nature,2013,501(7465):88-92
|
CSCD被引
70
次
|
|
|
|
20.
Piao S L. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity.
Nature Communications,2014,5:5018
|
CSCD被引
58
次
|
|
|
|
|