Al_(0.1)CoCrFeNi高熵合金的力学性能和变形机理
Mechanical properties and deformation mechanisms of Al_(0.1)CoCrFeNi high-entropy alloys
查看参考文献23篇
文摘
|
Al_(0.1)CoCrFeNi高熵合金由真空磁悬浮熔炼制备而成,利用INSTRON力学试验机进行室温准静态拉伸,采用X射线衍射仪(XRD)、光学显微镜、扫描电镜(SEM)、透射电镜(TEM)和纳米压痕仪对实验前后样品的晶体结构、形貌、成分、组织、硬度和蠕变行为进行了研究。结果表明,经拉伸变形后,合金具有优异的强塑积(约为24GPa·%)、显著的应变硬化效应和更好的抗蠕变行为。试样的断裂模式为典型的微孔聚集型断裂。晶粒内部含有大量的微带组织,其带宽为200~300nm。分析认为,微观组织中的微带诱导塑性效应是合金具有优异的应变硬化能力的一个重要原因。 |
其他语种文摘
|
The Al_(0.1)CoCrFeNi high-entropy alloy(HEA)was melted by vacuum magnetic levitation, and quasi-static tensile experiments were performed by using an INSTRON mechanical testing system. The crystal structure,surface morphology,composition,microstructure,hardness,and creep behavior of the samples before and after the experiment were analyzed by X-ray diffraction,optical microscopy, scanning electron microscopy,transmission electron microscopy,and nanoidentation.Results reveal that after tensile deformation,the alloy has an excellent strength-ductility combination,a significant strain-hardening effect,and an improved creep resistance.The fracture mode of sample is the typical microvoid accumulation fracture;there are a lot of microbands(the band width is about 200-300nm)inside the grains.The excellent strain-hardening ability is believed to be originated from the microband-induced plasticity effect during tensile loading. |
来源
|
材料工程
,2019,47(1):106-111 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2018.000487
|
关键词
|
高熵合金
;
微观组织
;
力学性能
;
微带诱导塑性效应
|
地址
|
1.
太原理工大学应用力学与生物医学工程研究所, 太原, 030024
2.
太原理工大学, 材料强度与结构冲击山西省重点实验室, 太原, 030024
3.
太原理工大学力学国家级实验教学示范中心, 太原, 030024
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
山西省高等学校科技创新项目
|
文献收藏号
|
CSCD:6438622
|
参考文献 共
23
共2页
|
1.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1460
次
|
|
|
|
2.
Cantor B. Microstructural development in equiatomic multicomponent alloys.
Materials Science and Engineering:A,2004,375/377(1):213-218
|
CSCD被引
745
次
|
|
|
|
3.
Yao H W. NbTaV-(Ti,W)refractory high-entropy alloys:experiments and modeling.
Materials Science and Engineering:A,2016,674:203-211
|
CSCD被引
42
次
|
|
|
|
4.
Zhao Y J. A hexagonal closepacked high-entropy alloy:the effect of entropy.
Materials & Design,2016,96:10-15
|
CSCD被引
51
次
|
|
|
|
5.
Gludovatz B. A fracture-resistant high-entropy alloy for cryogenic applications.
Science,2014,345(6201):1153-1158
|
CSCD被引
541
次
|
|
|
|
6.
Ma S G. Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2high-entropy alloy.
Materials Science and Engineering:A,2016,649:35-38
|
CSCD被引
14
次
|
|
|
|
7.
Senkov O N. Mechanical properties of Nb_(25)Mo_(25)Ta_(25)W_(25) and V_(20)Nb_(20)Mo_(20)Ta_(20)W_(20),refractory high entropy alloys.
Intermetallics,2011,19(5):698-706
|
CSCD被引
313
次
|
|
|
|
8.
Hsu C Y. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys.
Wear,2010,268(5):653-659
|
CSCD被引
52
次
|
|
|
|
9.
刘用. Al_xCrCuFeNi_2多主元高熵合金的摩擦磨损性能.
材料工程,2018,46(2):99-104
|
CSCD被引
7
次
|
|
|
|
10.
Meyer M A.
Mechanical behavior of materials,2004
|
CSCD被引
1
次
|
|
|
|
11.
Gutierrez-Urrutia I. The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel.
Materials Science and Engineering:A,2010,527(15):3552-3560
|
CSCD被引
33
次
|
|
|
|
12.
Shen Y F. Softening behavior by excessive twinning and adiabatic heating at high strain rate in a Fe-20Mn-0.6CTWIP steel.
Acta Materialia,2016,103:229-242
|
CSCD被引
10
次
|
|
|
|
13.
Xu S. Dynamic tensile behavior of TWIP steel under intermediate strain rate loading.
Materials Science and Engineering:A,2013,573(573):132-140
|
CSCD被引
10
次
|
|
|
|
14.
Wang Z. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25 Ni1.25,high-entropy alloy.
Materials Science and Engineering: A,2015,645:163-169
|
CSCD被引
12
次
|
|
|
|
15.
Gao M C.
High-entropy alloys: fundamentals and applications,2015
|
CSCD被引
2
次
|
|
|
|
16.
Gutierrez-Urrutia I. Microbanding mechanism in an Fe-Mn-C high-Mn twinning-induced plasticity steel.
Scripta Materialia,2013,69(1):53-56
|
CSCD被引
6
次
|
|
|
|
17.
Wu W. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by highpressure torsion.
Scientific Reports,2017,7:46720
|
CSCD被引
5
次
|
|
|
|
18.
Wu W. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNi-Mo0.15high-entropy alloy.
Philosophical Magazine,2017,97(34):1-17
|
CSCD被引
5
次
|
|
|
|
19.
Wang Z. The effect of carbon on the microstructures, mechanical properties and deformation mechanisms of thermo-mechanically treated Fe_(40.4)Ni_(11.3)Mn_(34.8) Al_(7.5)Cr_6,high entropy alloys.
Acta Materialia,2017,126:346-360
|
CSCD被引
27
次
|
|
|
|
20.
Huang J C. Microband formation in shockloaded and quasi-statically deformed metals.
Acta Metallurgica,1989,37(12):3335-3347
|
CSCD被引
7
次
|
|
|
|
|