基于纤维素纳米晶体的刺激响应功能材料的研究进展
Research progress in stimuli-responsive functional materials based on cellulose nanocrystals
查看参考文献57篇
文摘
|
纤维素纳米晶体(cellulose nanocrystal,CNC)具备高强度、高模量、结构可控、易于表面修饰、生物相容性、生物可降解性,在刺激响应功能材料的设计组装过程中扮演着越来越重要的角色。作为一类具有“智能”行为的大分子体系,刺激响应功能材料在受到外部环境的刺激时,能够做出灵敏响应,体现出设定的相应功能,CNC的引入不仅能够调控其力学性能,表面存在的羟基、羧基也为丰富材料的刺激响应源提供了便捷途径。本文从CNC的化学结构切入,介绍了CNC的特性及其构建的刺激响应功能材料的合成思路,并以刺激“开关”为主线,重点介绍了基于CNC的水、pH、热、光单一或多重刺激响应功能材料的研究进展,最后指出,提高纤维素纳米晶体表面修饰改性效率,拓宽多重刺激响应性,实现高性能的基于纤维素纳米晶体的多重刺激响应功能材料的制备是未来该领域的研究重点。 |
其他语种文摘
|
Cellulose nanocrystal(CNC)plays a more and more important role in the process of designing and assembly of functional materials,due to its high strength and modulus,controllable structure, feasible modification,biocompatibility and biodegradability.As a kind of macromolecule system with"intelligent" behavior,the stimuli-responsively functional materials make a sensitive response when stimulated by the external environment,and show the corresponding function.With the addition of CNCs,not only the mechanical properties of CNC-based functional materials are greatly improved, but also the hydroxyl and carboxyl groups on the surface of CNCs provide a convenient way to enrich the stimulus response source of these functional materials.Herein,combining with the chemical structure of CNC,the synthesis of CNC-based stimuli-responsive functional materials was comprehensively summarized.Meanwhile,the recent developments of single or multiple stimuli-responsive functional materials based on CNCs,such as water-,thermal-,pH-,light-responsive functional materials were summarized,with the stimulate switch taken as the main line.Finally,it was pointed out that future research would focus on improving the surface-modification efficiency of CNC,and broadening multi-stimulus responsiveness of CNC-based functional materials.The preparation of CNC-based functional materials with high performances will be significant in the future research as well. |
来源
|
材料工程
,2019,47(1):32-41 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2017.001046
|
关键词
|
纤维素纳米晶体
;
刺激
;
响应
;
功能材料
;
复合材料
|
地址
|
南京林业大学材料科学与工程学院, 南京, 210037
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
国家自然科学基金
;
南京林业大学杰出青年项目
|
文献收藏号
|
CSCD:6438612
|
参考文献 共
57
共3页
|
1.
Lang F. Functional significance of cell volume regulatory mechanisms.
Physiological Reviews,1998,78(1):247-306
|
CSCD被引
37
次
|
|
|
|
2.
Ibric S. From smart materials to advanced drug delivery systems.
International Journal of Pharmaceutics,2017,533(2):323
|
CSCD被引
1
次
|
|
|
|
3.
Coukouma A E. Increased volume responsiveness of macroporous hydrogels.
Sensors and Actuators BChemical,2018,255:2900-2903
|
CSCD被引
1
次
|
|
|
|
4.
Ma X. Stimuli-responsive supramolecular polymers in aqueous solution.
Accounts of Chemical Research,2014,47(7):1971-1981
|
CSCD被引
55
次
|
|
|
|
5.
赵稼祥. 先进复合材料的发展与展望.
材料工程,2000(10):40-44,48
|
CSCD被引
9
次
|
|
|
|
6.
Lu Y. Stimuli-responsive nanomaterials for therapeutic protein delivery.
Journal of Controlled Release,2014,194:1-19
|
CSCD被引
13
次
|
|
|
|
7.
Islam R M. Stimuli-responsive polymeric materials for human health application.
Chinese Science Bulletin,2014,59(32):4237-4255
|
CSCD被引
3
次
|
|
|
|
8.
Eichhorn S J. Review: current international research into cellulose nanofibres and nanocomposites.
Journal of Materials Science,2010,45(1):1-33
|
CSCD被引
48
次
|
|
|
|
9.
Habibi Y. Cellulose nanocrystals: chemistry,self-assembly,and applications.
Chemical Reviews,2010,110(6):3479-3500
|
CSCD被引
148
次
|
|
|
|
10.
Nishiyama Y. Structure and properties of the cellulose microfibril.
Journal of Wood Science,2009,55(4):241-249
|
CSCD被引
11
次
|
|
|
|
11.
潘明珠.
生物质纳米材料的制备及其功能应用,2016:130-136
|
CSCD被引
1
次
|
|
|
|
12.
Sturcova A. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers.
Biomacromolecules,2005,6(2):1055-1061
|
CSCD被引
38
次
|
|
|
|
13.
Mahmoud K A. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals.
ACS Applied Materials & Interfaces,2010,2(10):2924-2932
|
CSCD被引
12
次
|
|
|
|
14.
Dong S. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting.
Biomacromolecules,2014,15(5):1560-1567
|
CSCD被引
4
次
|
|
|
|
15.
Samuel J. Miniaturization of organically doped sol-gel materials:a microns-size fluorescent pH sensor.
Materials Letters,1994,21(5/6):431-434
|
CSCD被引
3
次
|
|
|
|
16.
Roy S G. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium.
ACS Applied Materials & Interfaces,2014,6(6):4233-4241
|
CSCD被引
4
次
|
|
|
|
17.
Patil N. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate):deswelling kinetics probed by quantitative mueller matrix polarimetry.
Journal of Physical Chemistry B,2012,116(47):13913-13921
|
CSCD被引
3
次
|
|
|
|
18.
Seliktar D. Designing cell-compatible hydrogels for biomedical applications.
Science,2012,336(6085):1124-1128
|
CSCD被引
89
次
|
|
|
|
19.
Stuart M A C. Emerging applications of stimuli-responsive polymer materials.
Nature Materials,2010,9(2):101-113
|
CSCD被引
190
次
|
|
|
|
20.
Hubbe M A. Cellulosic nanocomposites: a review.
Bio Resources,2008,3(3):929-980
|
CSCD被引
21
次
|
|
|
|
|