帮助 关于我们

返回检索结果

基于结构紧密性的重叠社区发现算法
The Overlapping Community Discovery Algorithm Based on Compact Structure

查看参考文献16篇

潘剑飞 1,2   董一鸿 1 *   陈华辉 1   钱江波 1   戴明洋 2  
文摘 随着网络结构的不断扩大和日益复杂,传统的重叠社区发现算法已经不能有效地处理大规模网络数据,发现合理的社区结构.本文提出了顶点引力的概念,引入顶点凝聚度和社区凝聚度作为满足社区的外部结构稀疏性和社区内部结构紧密性的判定指标,构造了基于结构紧密性的重叠社区发现算法OCSC.该算法经过预处理,核心子图划分以及核心社区的扩展三个步骤,能有效地发现重叠社区,通过对人工合成网络和真实网络结构的社区发现实验,运用NMI和F1Score等指标验证OCSC算法的合理性和优越性.
其他语种文摘 With the continuous expansion and complexity of network structure, the traditional overlapping community detection algorithm can not effectively discover reasonable community structure in large-scale network structure. Based on the concept of vertex gravity proposed in this paper,we introduce vertex cohesion and community cohesion as indexes for community structure-close internal structure and sparse external structure, and then put forward overlapping community structure algorithm OCSC. The steps of OCSC algorithm include pre-processing, core sub-mapping and core community expansion. Finally,NMI and F1Score confirm the rationality and superiority of OCSC algorithm by experimentation on synthetic and real network structures.
来源 电子学报 ,2019,47(1):145-152 【核心库】
DOI 10.3969/j.issn.0372-2112.2019.01.019
关键词 社区发现 ; 重叠社区 ; 核心社区 ; 大规模网络结构 ; spark
地址

1. 宁波大学信息科学与工程学院, 浙江, 宁波, 315211  

2. 北京百度在线科技有限公司, 北京, 100084

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  浙江省自然科学基金 ;  浙江省宁波市自然科学基金
文献收藏号 CSCD:6437283

参考文献 共 16 共1页

1.  Wang Y Z. Network big data: Present and future. Chinese Journal of Computers,2013,36(6):1125-1138 CSCD被引 5    
2.  Newman M E J. Finding and evaluating community structure in networks. Physcial Review E,2004,69(2):026111 CSCD被引 1547    
3.  Xie J R. SLPA: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. Proc of the 2011 IEEE 11th Int'l Conf on Data Mining Workshops,2011:344-349 CSCD被引 1    
4.  王诗懿. 大规模复杂网络下重叠社区的识别. 电子学报,2015,43(8):1575-1582 CSCD被引 3    
5.  Adamcsek B. C nder: locating cliques and overlapping modules in biological networks. Bioinformatics,2006,22:1021-1023 CSCD被引 53    
6.  Prat P. Putthree and three together: triangle-driven community detection. ACM Transactions on Knowledge Discovery from Data,2016,10(3):22 CSCD被引 2    
7.  Zhang X W. Overlapping community identification approach in online social networks. Physica A,2015,421:233-428 CSCD被引 4    
8.  Gregory S. An algorithm to find overlapping community structure in networks. Proc of the European Conf on Principles of Data Mining and Knowledge Discovery,2007:91-102 CSCD被引 1    
9.  Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics,2010,12(10):103018 CSCD被引 127    
10.  Gopalan P K. Effcient discovery of overlapping communities in massive networks. Proc Natl Acad Sci,2013,110(36):14534-14539 CSCD被引 17    
11.  Li M. A link clustering based memetic algorithm for overlapping community detection. Physica A Statistical Mechanics & Its Applications,2018:410-423 CSCD被引 2    
12.  Lancichinetti A. Limits of modularity maximization in community detection. Physical Review E,2011,84:066122 CSCD被引 13    
13.  Altaf-Ul-Amin M. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics,2006,7:207 CSCD被引 29    
14.  Whang J. Overlapping community detection using neighborhood-inflated seed expansion. IEEE Transactions on Knowledge and Data Engineering,2015,28(5):1272-1284 CSCD被引 16    
15.  Cai G Y. Study onlabel propagation based community detection algorithm for social semantic network. Computer Science,2013,40(2):53-57 CSCD被引 1    
16.  Yang J. Overlapping community detection at scale: a nonnegative matrix factorization approach. ACM International Conference on Web Search and Data Mining,2013:587-596 CSCD被引 1    
引证文献 8

1 梁世娇 基于节点亲密度的标签传播重叠社区发现算法 云南大学学报. 自然科学版,2020,42(1):58-65
CSCD被引 3

2 李慧 基于时间加权的重叠社区检测算法研究 自动化学报,2021,47(4):933-942
CSCD被引 1

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号