基于结构紧密性的重叠社区发现算法
The Overlapping Community Discovery Algorithm Based on Compact Structure
查看参考文献16篇
文摘
|
随着网络结构的不断扩大和日益复杂,传统的重叠社区发现算法已经不能有效地处理大规模网络数据,发现合理的社区结构.本文提出了顶点引力的概念,引入顶点凝聚度和社区凝聚度作为满足社区的外部结构稀疏性和社区内部结构紧密性的判定指标,构造了基于结构紧密性的重叠社区发现算法OCSC.该算法经过预处理,核心子图划分以及核心社区的扩展三个步骤,能有效地发现重叠社区,通过对人工合成网络和真实网络结构的社区发现实验,运用NMI和F1Score等指标验证OCSC算法的合理性和优越性. |
其他语种文摘
|
With the continuous expansion and complexity of network structure, the traditional overlapping community detection algorithm can not effectively discover reasonable community structure in large-scale network structure. Based on the concept of vertex gravity proposed in this paper,we introduce vertex cohesion and community cohesion as indexes for community structure-close internal structure and sparse external structure, and then put forward overlapping community structure algorithm OCSC. The steps of OCSC algorithm include pre-processing, core sub-mapping and core community expansion. Finally,NMI and F1Score confirm the rationality and superiority of OCSC algorithm by experimentation on synthetic and real network structures. |
来源
|
电子学报
,2019,47(1):145-152 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.01.019
|
关键词
|
社区发现
;
重叠社区
;
核心社区
;
大规模网络结构
;
spark
|
地址
|
1.
宁波大学信息科学与工程学院, 浙江, 宁波, 315211
2.
北京百度在线科技有限公司, 北京, 100084
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
浙江省自然科学基金
;
浙江省宁波市自然科学基金
|
文献收藏号
|
CSCD:6437283
|
参考文献 共
16
共1页
|
1.
Wang Y Z. Network big data: Present and future.
Chinese Journal of Computers,2013,36(6):1125-1138
|
CSCD被引
5
次
|
|
|
|
2.
Newman M E J. Finding and evaluating community structure in networks.
Physcial Review E,2004,69(2):026111
|
CSCD被引
1547
次
|
|
|
|
3.
Xie J R. SLPA: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process.
Proc of the 2011 IEEE 11th Int'l Conf on Data Mining Workshops,2011:344-349
|
CSCD被引
1
次
|
|
|
|
4.
王诗懿. 大规模复杂网络下重叠社区的识别.
电子学报,2015,43(8):1575-1582
|
CSCD被引
3
次
|
|
|
|
5.
Adamcsek B. C nder: locating cliques and overlapping modules in biological networks.
Bioinformatics,2006,22:1021-1023
|
CSCD被引
53
次
|
|
|
|
6.
Prat P. Putthree and three together: triangle-driven community detection.
ACM Transactions on Knowledge Discovery from Data,2016,10(3):22
|
CSCD被引
2
次
|
|
|
|
7.
Zhang X W. Overlapping community identification approach in online social networks.
Physica A,2015,421:233-428
|
CSCD被引
4
次
|
|
|
|
8.
Gregory S. An algorithm to find overlapping community structure in networks.
Proc of the European Conf on Principles of Data Mining and Knowledge Discovery,2007:91-102
|
CSCD被引
1
次
|
|
|
|
9.
Gregory S. Finding overlapping communities in networks by label propagation.
New Journal of Physics,2010,12(10):103018
|
CSCD被引
127
次
|
|
|
|
10.
Gopalan P K. Effcient discovery of overlapping communities in massive networks.
Proc Natl Acad Sci,2013,110(36):14534-14539
|
CSCD被引
17
次
|
|
|
|
11.
Li M. A link clustering based memetic algorithm for overlapping community detection.
Physica A Statistical Mechanics & Its Applications,2018:410-423
|
CSCD被引
2
次
|
|
|
|
12.
Lancichinetti A. Limits of modularity maximization in community detection.
Physical Review E,2011,84:066122
|
CSCD被引
13
次
|
|
|
|
13.
Altaf-Ul-Amin M. Development and implementation of an algorithm for detection of protein complexes in large interaction networks.
BMC Bioinformatics,2006,7:207
|
CSCD被引
29
次
|
|
|
|
14.
Whang J. Overlapping community detection using neighborhood-inflated seed expansion.
IEEE Transactions on Knowledge and Data Engineering,2015,28(5):1272-1284
|
CSCD被引
16
次
|
|
|
|
15.
Cai G Y. Study onlabel propagation based community detection algorithm for social semantic network.
Computer Science,2013,40(2):53-57
|
CSCD被引
1
次
|
|
|
|
16.
Yang J. Overlapping community detection at scale: a nonnegative matrix factorization approach.
ACM International Conference on Web Search and Data Mining,2013:587-596
|
CSCD被引
1
次
|
|
|
|
|