湖南锡矿山超大型锑矿床围岩蚀变元素迁移特征及定量计算研究
Elemental Migration and Mass Balance Calculation of Wall Rock Alternation in the Xikuangshan Sb Deposit, Hunan Province
查看参考文献42篇
文摘
|
湖南锡矿山锑矿床是目前世界上已发现的最大的锑矿床,其硅化非常发育且与矿化关系密切,根据硅化蚀变程度的强弱,从围岩到矿石大致划分为4个带:灰岩→弱硅化灰岩→强硅化灰岩→矿石。为揭示锡矿山锑矿的成矿过程及成矿流体信息,利用Isocon标准化方法,以Al_2O_3为惰性组分,对各蚀变带围岩及矿石的主、微量元素进行质量平衡计算。结果表明,热液蚀变过程中,Si、Sb、Li和Bi等大量迁入,而Ca、Mg、Na和大离子亲石元素Sr、Ba、Rb等大量迁出;成矿热液呈酸性并富硅,其中Hg、As、Au、Tl等元素含量极低,这可能是导致锡矿山锑矿床矿种单一的原因之一。稀土元素除Eu外,其他元素未发生明显的活化迁移,水岩反应并未影响原岩的稀土元素配分模式;蚀变岩及矿石中的Eu负异常可能表明成矿过程是在相对还原的环境下进行的。 |
其他语种文摘
|
The Xikuangshan Sb deposit is the largest Sb deposit in the world. The silicification alteration is well developed in the deposit, which is closely associated with Sb mineralization. According to the alteration degree of wall rocks, four alteration zones are identified,including fresh limestone,weakly silicified limestone,strongly silicified limestone and high-grade ores. In this study, we carried out detailed elemental migration characteristics of wall rocks and ores from different alteration zones in order to decipher the nature of ore-forming fluids and mineralization process. The Isocon method is used to calculate the mass balance and Al_2O_3 compositions are regarded as immobile component. New results show that the majority elements including Si,Sb,Li and Bi are brought into wall rocks by hydrothermal fluids,whereas elements such as Ca, Mg, Na, Sr, Ba, Rb are significantly extracted out. The ore-forming fluids are acidic and silicic-enriched. Extremely low contents of Hg, Au, Tl and As may be responsible for the simple mineral assemblage in the Xikuangshan Sb deposit. REEs, except Eu, are not activated and migrated in such process and the REE patterns remain unchanged. Both altered rocks and ores have negative Eu anomalies,indicating that the mineralization took place in relatively reduced environment. |
来源
|
矿物岩石地球化学通报
,2019,38(1):103-113 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2019.38.020
|
关键词
|
热液蚀变
;
元素迁移
;
标准化Isocon法
;
锡矿山锑矿床
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学地球科学学院, 北京, 100049
3.
中南大学地球科学与信息物理学院, 有色金属成矿预测教育部重点实验室, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金重点项目
;
国家973计划
|
文献收藏号
|
CSCD:6434110
|
参考文献 共
42
共3页
|
1.
Beinlich A. Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction.
Geochimica et Cosmochimica Acta,2010,74(6):1892-1922
|
CSCD被引
25
次
|
|
|
|
2.
Fan D L. The Xikuangshan Sb deposit hosted by the upper Devonian black shale series,Hunan,China.
Ore Geology Reviews,2004,24(1/2):121-133
|
CSCD被引
15
次
|
|
|
|
3.
Gao J. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China.
Geochimica et Cosmochimica Acta,2007,71(20):4974-4996
|
CSCD被引
65
次
|
|
|
|
4.
Gotze J. Chemistry, textures and physical properties of quartz-geological interpretation and technical application.
Mineralogical Magazine,2009,73(4):645-671
|
CSCD被引
25
次
|
|
|
|
5.
Grant J A. The isocon diagram; A simple solution to Gresens' equation for metasomatic alteration.
Economic Geology,1986,81(8):1976-1982
|
CSCD被引
156
次
|
|
|
|
6.
Grant J A. Isocon analysis: A brief review of the method and applications.
Physics and Chemistry of the Earth, Parts A/B/C,2005,30(17/18):997-1004
|
CSCD被引
48
次
|
|
|
|
7.
Gresens R L. Composition-volume relationships of metasomatism.
Chemical Geology,1967,2:47-65
|
CSCD被引
88
次
|
|
|
|
8.
Guo S. Fluid-rock interaction and element mobilization in UHP metabasalt: Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen.
Lithos,2012,136/139:145-167
|
CSCD被引
28
次
|
|
|
|
9.
Guo S. A normalization solution to mass transfer illustration of multiple progressively altered samples using the ISOCON diagram.
Economic Geology,2009,104(6):881-886
|
CSCD被引
27
次
|
|
|
|
10.
Hu R Z. The giant south China mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model.
Journal of Asian Earth Sciences,2017,137:9-34
|
CSCD被引
84
次
|
|
|
|
11.
Hu X W. Sm-Nd dating for antimony mineralization in the Xikuangshan deposit, Hunan, China.
Resource Geology,1996,46(4):227-231
|
CSCD被引
22
次
|
|
|
|
12.
John T. Trace-element mobilization in slabs due to non-steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China).
Lithos,2008,103(1/2):1-24
|
CSCD被引
40
次
|
|
|
|
13.
Mori Y. Chemical mass balance in a reaction zone between serpentinite and metapelites in the Nishisonogi metamorphic rocks, Kyushu, Japan: Implications for devolatilization.
Island Arc,2007,16(1):28-39
|
CSCD被引
3
次
|
|
|
|
14.
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.
Acta Crystallographica,1976,32:751-767
|
CSCD被引
1228
次
|
|
|
|
15.
Tan Q P. Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong Carlin-type gold deposit, Guizhou, China.
Ore Geology Reviews,2015,69:140-156
|
CSCD被引
25
次
|
|
|
|
16.
Taylor S R.
The continental crust: Its composition and evolution,1985:312
|
CSCD被引
266
次
|
|
|
|
17.
Whitbread M A. Two lithogeochemical approaches to the identification of alteration patterns at the Elura Zn-Pb-Ag deposit, Cobar, New South Wales, Australia: Use of Pearce Element Ratio analysis and isocon analysis.
Geochemistry: Exploration,Environment, Analysis,2004,4(2):129-141
|
CSCD被引
16
次
|
|
|
|
18.
Yang D S. Sulfur isotope geochemistry of the supergiant Xikuangshan Sb deposit, Central Hunan, China: Constraints on sources of ore constituents.
Resource Geology,2006,56(4):385-396
|
CSCD被引
10
次
|
|
|
|
19.
Yigit O. Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend, Nevada.
Ore Geology Reviews,2003,22(3/4):201-224
|
CSCD被引
10
次
|
|
|
|
20.
郭顺. 开放地质体系中物质迁移质量平衡计算方法介绍.
岩石学报,2013,29(5):1486-1498
|
CSCD被引
29
次
|
|
|
|
|