中国人口省际流动重力模型的参数标定与误差估算
Gravity model coefficient calibration and error estimation: Based on Chinese interprovincial population flow
查看参考文献44篇
文摘
|
空间交互模型被广泛应用于地理要素关系强度的模拟,然而目前大量研究或建立在模型参数标定理想化、模式化的假设条件下,或是在暗箱中完成,由此导致模拟结果与实际的偏差却被严重低估。基于2015年中国春运期间人口省际流动的城市间O-D数据,在逐日、分市的研究精度下,实证推算人口流动重力模型变量的回归系数,探究模型代理变量影响效应的空间异质性,并评估重力模型在人口流动模拟上的误差。结果显示:①重力模型参数标定的复杂性体现在交互对象代理变量影响程度的非对称性,和变量回归系数的空间异质性随研究精度加深显著加剧两个方面,因此模型参数标定的模式化将导致估算结果空间差异的趋势收敛;② 2015年春运期间中国人口省际流动距离衰减系数为1.970,在地级行政单元视角下,人口流出地距离衰减系数值域为0.712(驻马店)~7.699(乌鲁木齐),人口流入地系数值域为0.792(三亚)~8.223(乌鲁木齐);③应用重力模型模拟人口流动结果与实测流(百度迁徙数据)存在显著误差。就加权绝对平均误差而言,拟合总误差为85.54%,其中空间相互作用效应造成了86.09%的实测流与模拟流的最大误差,相对流出力、相对吸引力分别造成57.73%、49.34%的模型误差。因此,空间交互效应仍然是当前最难以模式化的因素。 |
其他语种文摘
|
Simulations based on spatial interaction models have been widely applied to understand the strength of relationships between geographical elements, but many issues remain unclear and deviations between actual and simulated results have often been seriously underestimated. A high-precision Baidu migration process combined with mass relationships is applied in this study and enables the generation of regression coefficients of gravity model based on programmed large-scale regression simulations. A series of accuracy assessments are then developed for 2015 empirical projection daily regression coefficients that can be applied to Chinese spring interprovincial mobile gravity model variables as well as spatiotemporal research that utilizes regression coefficients within a heterogeneity research model. This approach also enables the error within the gravity model to be assessed in terms of floating population simulations. The results of this analysis lead to a number of clear conclusions, including the fact that parameter calibration complexity for the Chinese population mobility gravity model is reflected in the degree of influence asymmetry within spatial object interaction variables, and that the spatial heterogeneity of the variable regression coefficient increases in two distinct fashions. The first of these increases has to do with the overall influence of specific variables, including the fact that differences between proxies tend to be higher than inflowoutflow characteristics. In contrast, the second set of increases is related to economic levels, industrial scales, the proportion of the tertiary industry, and public service facilities. In this latter case, two-way population flow exerts a more profound influence on results and thus the scope of possible explanations for phenomena is more extensive. The regression coefficient for the existence of positive and negative proxy variables therefore relates to differences in spatial heterogeneity, including at the city level, and also assumes that floating population gravity model regression coefficients ignore spatiotemporal changes in the heterogeneity coefficient. This leads to spatial differences in estimated results and thus convergence trends, but further enables the identification of anisotropic interactions in extension space. The second main conclusion of this research is that the national scale population flow distance attenuation coefficient was 1.970 during the spring of 2015, while at the level of prefectural administrative units and given population outflow, the range encapsulated by this coefficient fell between 0.712 (Zhumadian) and 7.699 (Urumqi). Data also reveal a population inflow coefficient of 0.792 for this year that ranged as high as 8.223 in both Sanya and Urumqi. Population flow simulation results using the gravity model and including Baidu migration measured flow data were also subject to significant error. Third, the results of this analysis reveal a total fitting error of 85.54% in weighted absolute mean; the spatial interaction effect within this is responsible for a maximum error of 86.09% in actual and simulated flows, while relative outflow force and attractiveness encompass 57.73% and 49.34% of model error, respectively. These results show that the spatial interaction effect remains most difficult to model in terms of current factors. |
来源
|
地理学报
,2019,74(2):203-221 【核心库】
|
DOI
|
10.11821/dlxb201902001
|
关键词
|
重力模型
;
回归系数
;
距离衰减系数
;
误差估算
;
人口流动
;
中国
|
地址
|
1.
宁波大学公共管理系, 宁波, 315211
2.
东北师范大学地理科学学院, 长春, 130024
3.
福建师范大学地理研究所, 福州, 350007
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6431239
|
参考文献 共
44
共3页
|
1.
闫卫阳. 城市空间相互作用理论模型的演进与机理.
地理科学进展,2009,28(4):511-518
|
CSCD被引
35
次
|
|
|
|
2.
Roy J R.
Spatial Interaction Modeling: A Regional Science Context,2004:9-28
|
CSCD被引
2
次
|
|
|
|
3.
刘瑜. 空间交互作用中的距离影响及定量分析.
北京大学学报:自然科学版,2014,50(3):526-534
|
CSCD被引
34
次
|
|
|
|
4.
Tobler W. A computer movie simulating urban growth in the Detroit region.
Economic Geography,1970,46(2):234-240
|
CSCD被引
624
次
|
|
|
|
5.
王珏. 基于社会网络分析的长三角地区人口迁移及演化.
地理研究,2014,33(2):385-400
|
CSCD被引
43
次
|
|
|
|
6.
程婧瑶. 基于重力模型的中国金融中心体系识别.
经济地理,2013,33(3):8-14
|
CSCD被引
8
次
|
|
|
|
7.
蒋天颖. 基于引力模型的区域创新产出空间联系研究——以浙江省为例.
地理科学,2014,34(11):1320-1326
|
CSCD被引
39
次
|
|
|
|
8.
Paez A. Measuring accessibility: Positive and normative implementations of various accessibility indicators.
Journal of Transport Geography,2012,25:141-153
|
CSCD被引
17
次
|
|
|
|
9.
刘继生. 分形城市引力模型的一般形式和应用方法??关于城市体系空间作用的引力理论探讨.
地理科学,2000,20(6):528-533
|
CSCD被引
45
次
|
|
|
|
10.
肖磊. 京津冀都市圈城镇体系演化时空特征.
地理科学进展,2011,30(2):215-223
|
CSCD被引
15
次
|
|
|
|
11.
邓羽. 中国中部地区城市影响范围划分方法的比较.
地理研究,2013,32(7):1220-1230
|
CSCD被引
16
次
|
|
|
|
12.
王丽. 基于改进场模型的城市影响范围动态演变----以中国中部地区为例.
地理学报,2011,66(2):189-198
|
CSCD被引
35
次
|
|
|
|
13.
汪德根. 高铁网络化下中国城市旅游场强空间格局及演化.
地理学报,2016,71(10):1784-1800
|
CSCD被引
24
次
|
|
|
|
14.
李陈. 基于引力模型的中心镇空间联系测度研究——以浙江省金华市25个中心镇为例.
地理科学,2016,36(5):724-732
|
CSCD被引
19
次
|
|
|
|
15.
王茂军. 基于距离与规模的中国城市体系规模结构.
地理研究,2010,29(7):1257-1268
|
CSCD被引
12
次
|
|
|
|
16.
吴健生. 中国城市体系等级结构及其空间格局——基于DMSP/OLS夜间灯光数据的实证.
地理学报,2014,69(6):759-770
|
CSCD被引
61
次
|
|
|
|
17.
刘少湃. 上海迪士尼在建景区客源市场空间结构预测——旅游引力模型的修正及应用.
地理学报,2016,71(2):304-321
|
CSCD被引
17
次
|
|
|
|
18.
王成金. 中国交通流的衰减函数模拟及特征.
地理科学进展,2009,28(5):690-696
|
CSCD被引
21
次
|
|
|
|
19.
Gottmann J. Global Financial Integration: The End of Geography, by Richard O'Brien.
International Affairs,1992,68(3):225-243
|
CSCD被引
1
次
|
|
|
|
20.
Shen J F. Explaining interregional migration changes in China, 1985-2000, using a decomposition approach.
Regional Studies,2015,49(7):1176-1192
|
CSCD被引
5
次
|
|
|
|
|