基于道路分段的车载自组织网络路由协议
Vehicular Ad Hoc Network Routing Protocol Based on Road-subsection
查看参考文献16篇
文摘
|
针对城市车载自组织网络中由于车辆运行速度快、网络拓扑结构变化频繁导致的路由链路不稳定问题,提出一种基于道路分段的车载路由协议RSRP。考虑交通灯对车辆速度和空间分布的影响,对不同区域的道路进行分段,选择路段上骨干节点,建立稳定的道路骨干网。在交叉路口选择桥节点,连接相邻路段上的骨干节点,获取路段上传输包所产生的延迟,并更新路段上的网络拓扑信息,通过桥节点获取的车辆状态信息,对路段分配相应权重,并选择最低权重所对应的路段作为路由路径,进而提高数据包传输的投递率,减小端到端时延。在NS2实验仿真平台下模拟真实的城市道路与车辆交通场景,结果表明,与GPSR、GyTAR等路由协议相比,RSRP协议能更好地适用于城市道路场景。 |
其他语种文摘
|
Aiming at the problem of unstable routing links caused by rapid vehicle movement and frequent changes of network topology in urban Vehicular Ad Hoc Network(VANET),an vehicular routing protocol RSRP(Road-subsection Routing Protocol) based on road subsection is proposed. This paper takes into account the impact of traffic lights on the speed and spatial distribution of vehicles and segments the roads. On this basis,the selection of backbone nodes is selected on the road,a stable road backbone network is established bridge nodes is selected at the intersection,these nodes are connected with backbone node on adjacent sections of the road,the transmission delay packet generated is gotten,and the information of network topology is updated on the road. Through the vehicle state information obtained by the bridge node,the section is distributed the corresponding weights,and the corresponding minimum weight is selected as sections of the routing path,to improve the delivery rate of data packet transmission and reduce the End to End Delay(E2ED). The real urban road and vehicle traffic scenarios are simulated under the NS2 experimental simulation platform,results show that the RSRP protocol can be better applied to urban road scenarios than GPSR and GyTAR routing protocols. |
来源
|
计算机工程
,2019,45(2):32-37 【扩展库】
|
DOI
|
10.19678/j.issn.1000-3428.0049927
|
关键词
|
车载自组织网络
;
网络拓扑
;
道路分段
;
骨干网
;
桥节点
;
投递率
;
端到端时延
|
地址
|
中国石油大学(华东)计算机与通信工程学院, 山东, 青岛, 266500
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3428 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金青年基金
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:6425516
|
参考文献 共
16
共1页
|
1.
Cooper C. A comparative survey of VANET clustering techniques.
IEEE Communications Surveys and Tutorials,2017(99):1
|
CSCD被引
1
次
|
|
|
|
2.
Bariah L. Recent advances in VANET security: a survey.
Proceedings of Vehicular Technology Conference,2016:1-7
|
CSCD被引
1
次
|
|
|
|
3.
Yang Y. VANET link characteristics and analysis in urban and suburban scenarios.
Proceedings of IEEE International Conference on Communications,Circuits and Systems,2008:84-88
|
CSCD被引
1
次
|
|
|
|
4.
Shijinn H. Enhancing security and privacy for identity-based batch verification scheme in VANET.
IEEE Transactions on Vehicular Technology,2017,66(99):1
|
CSCD被引
1
次
|
|
|
|
5.
Cao Y. Towards efficient electric vehicle charging using VANET-based information dissemination.
IEEE Transactions on Vehicular Technology,2017,66(4):2886-2901
|
CSCD被引
1
次
|
|
|
|
6.
贾建斌. 基于预测的机会车载网络中继选择策略研究.
软件学报,2015,26(7):1730-1741
|
CSCD被引
8
次
|
|
|
|
7.
Karp B. GPSR:greedy perimeter stateless routing for wireless networks.
Proceedings of the 6th Annual Hawaii International Conference on Mobile Computing and Networking,2000:243-254
|
CSCD被引
1
次
|
|
|
|
8.
Togou M A. SCRP: stable cds-based routing protocol for urban vehicular ad hoc networks.
IEEE Transactions on Intelligent Transportation Systems,17(5):1298-1307
|
CSCD被引
7
次
|
|
|
|
9.
Lochert C. Geographic routing in city scenarios.
ACM SIGMOBILE Mobile Computing and Communications Review,2005,9(1):69-72
|
CSCD被引
28
次
|
|
|
|
10.
Lochert C. A routing strategy for vehicular ad hoc networks in city environments.
Proceedings of IEEE Intelligent Vehicles Symposium,2003:156-161
|
CSCD被引
5
次
|
|
|
|
11.
Zhao J. VADD:vehicle-assisted data delivery in vehicular ad hoc networks.
IEEE Transportation Vehicular Technology,2008,57(3):1910-1922
|
CSCD被引
34
次
|
|
|
|
12.
Jerbi M. An improved vehicular ad hoc routing protocol for city environments.
Proceedings of IEEE ICC'07,2007:3972-3979
|
CSCD被引
1
次
|
|
|
|
13.
Alsharif N. iCAR: intersection-based connectivity aware routing in vehicular ad hoc networks.
Proceedings of IEEE ICC'13,2013:1736-1741
|
CSCD被引
1
次
|
|
|
|
14.
Sahu P. BAHG: back-boneassisted hop greedy routing for VANET's city environments.
IEEE Transactions on Intelligent Transportation Systems,2013,14(1):199-213
|
CSCD被引
1
次
|
|
|
|
15.
Sofra N. Route construction for long lifetime in VANETs.
IEEE Transportation Vehicular Technology,2011,60(7):3450-3461
|
CSCD被引
2
次
|
|
|
|
16.
Chang J. Intersection-based routing for urban vehicular communications with trafficlight considerations.
IEEE Wireless Communications,2012,19(1):82-88
|
CSCD被引
2
次
|
|
|
|
|