中国东部南北样带森林生态系统蒸腾与蒸散比值(T/ET)时空变化
Spatio-temporal variations of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of Eastern China
查看参考文献31篇
文摘
|
植被蒸腾与蒸散的比值(transpiration/evapotranspiration, T/ET)表征了植被蒸腾对生态系统蒸散的贡献率,是准确量化生态系统水分利用效率的关键参数,对研究植被水分运移的生理生态机理以及碳水循环关系具有重要意义。基于站点数据验证PT-JPL模型(Priestly-Taylor Jet Propulsion Laboratory Model)模拟精度,集成遥感数据和气象栅格数据模拟中国东部南北样带森林生态系统2001-2010年T/ET,并分析其时空变化及影响因子。结果表明:① PT-JPL模型适用于中国东部森林生态系统蒸散及其组分模拟,具有较高的稳定性和可靠性;②中国东部南北样带森林生态系统T/ET空间差异显著,整体呈南部低、北部高,主要由夏季T/ET空间格局主导;样带整体T/ET均值为0.69,2001-2010年呈显著缓慢上升趋势,增幅为0.007/yr(p < 0.01); ③ T/ET季节和年际变异的主控因子不同:温度和EVI是影响T/ET季节变异的关键因子,两者均可解释T/ET季节变异的90%左右(p < 0.01);而T/ET的年际变异则主要受EVI影响,解释率为53%(p < 0.05)。 |
其他语种文摘
|
The ratio of transpiration to evapotranspiration (T/ET) is a key parameter for quantifying water use efficiency of ecosystems and understanding the interaction between ecosystem carbon uptake and water cycling in the context of global change. The estimation of T/ET has been paid increasing attention from the scientific community in recent years globally. In this paper, we used the Priestly-Taylor Jet Propulsion Laboratory Model (PT-JPL) driven by regional remote sensing data and gridded meteorological data, to simulate the T/ET in forest ecosystems along the North-South Transect of Eastern China (NSTEC) during 2001-2010, and to analyze the spatial distribution and temporal variation of T/ET, as well as the factors influencing the variation in T/ET. The results show that: (1) The PT-JPL model is suitable for the simulation of evapotranspiration and its components of forest ecosystems in Eastern China, and has relatively good stability and reliability. (2) Spatial distribution of T/ET in forest ecosystems along NSTEC was heterogeneous, i.e., T/ET was higher in the north and lower in the south, with an averaged value of 0.69; and the inter- annual variation of T/ET showed a significantly increasing trend, with an increment of 0.007/yr (p < 0.01). (3) Seasonal and interannual variations of T/ET had different dominant factors. Temperature and EVI can explain around 90% (p < 0.01) of the seasonal variation in T/ET, while the inter-annual variation in T/ET was mainly controlled by EVI (53%, p < 0.05). |
来源
|
地理学报
,2019,74(1):63-75 【核心库】
|
DOI
|
10.11821/dlxb201901005
|
关键词
|
中国东部南北样带
;
森林生态系统
;
蒸腾与蒸散比值(T/ET)
;
水分利用效率(WUE)
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京, 100101
2.
中科同德(北京)生态科技有限公司, 北京, 100124
3.
中国科学院大学资源与环境学院, 北京, 100190
4.
中国科学院大学, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
林业 |
基金
|
国家重点基础研究发展计划(973计划)
;
国家自然科学基金项目
;
国家重点研发计划
|
文献收藏号
|
CSCD:6424950
|
参考文献 共
31
共2页
|
1.
Maxwell R M. Connections between groundwater flow and transpiration partitioning.
Science,2016,353(6297):377-380
|
CSCD被引
21
次
|
|
|
|
2.
Fisher J B. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites.
Remote Sensing of Environment,2008,112(3):901-919
|
CSCD被引
57
次
|
|
|
|
3.
Zhu X J. Spatiotemporal variations of T/ET (the ratio of transpiration to evapotranspiration) in three forests of Eastern China.
Ecological Indicators,2015,52:411-421
|
CSCD被引
11
次
|
|
|
|
4.
Berkelhammer M. Convergent approaches to determine an ecosystem's transpiration fraction.
Global Biogeochemical Cycles,2016,30(6):933-951
|
CSCD被引
8
次
|
|
|
|
5.
Fatichi S. Constrained variability of modeled T:ET ratio across biomes.
Geophysical Research Letters,2017,44(13):6795-6803
|
CSCD被引
8
次
|
|
|
|
6.
Wei Z W. Revisiting the contribution of transpiration to global terrestrial evapotranspiration.
Geophysical Research Letters,2017,44(6):2792-2801
|
CSCD被引
16
次
|
|
|
|
7.
Schlesinger W H. Transpiration in the global water cycle.
Agricultural and Forest Meteorology,2014,189:115-117
|
CSCD被引
47
次
|
|
|
|
8.
Miralles D G. Magnitude and variability of land evaporation and its components at the global scale.
Hydrology and Earth System Sciences,2011,15(3):967-981
|
CSCD被引
18
次
|
|
|
|
9.
Jasechko S. Terrestrial water fluxes dominated by transpiration.
Nature,2013,496(7445):347-351
|
CSCD被引
64
次
|
|
|
|
10.
Cheng L. Recent increases in terrestrial carbon uptake at little cost to the water cycle.
Nature Communications,2017,8:110
|
CSCD被引
4
次
|
|
|
|
11.
Scott R L. Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes.
Geophysical Research Letters,2017,44(13):6833-6840
|
CSCD被引
7
次
|
|
|
|
12.
胡中民. 生态系统水分利用效率研究进展.
生态学报,2009,29(3):1498-1507
|
CSCD被引
88
次
|
|
|
|
13.
Gao Y. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation.
Agricultural and Forest Meteorology,2014,195:32-37
|
CSCD被引
24
次
|
|
|
|
14.
Zhou S. Partitioning evapotranspiration based on the concept of underlying water use efficiency.
Water Resources Research,2016,52(2):1160-1175
|
CSCD被引
14
次
|
|
|
|
15.
Coenders-Gerrits A M J. Uncertainties in transpiration estimates.
Nature,2014,506(7487):E1-E2
|
CSCD被引
9
次
|
|
|
|
16.
Wang L X. Global synthesis of vegetation control on evapotranspiration partitioning.
Geophysical Research Letters,2014,41(19):6753-6757
|
CSCD被引
10
次
|
|
|
|
17.
Good S P. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes.
Science,2015,349(6244):175-177
|
CSCD被引
34
次
|
|
|
|
18.
Miralles D G. The WACMOS-ET project (Part 2):Evaluation of global terrestrial evaporation data sets.
Hydrology and Earth System Sciences,2016,20(2):823-842
|
CSCD被引
19
次
|
|
|
|
19.
Lawrence D M. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM:Impacts on land-atmosphere interaction.
Journal of Hydrometeorology,2007,8(4):862-880
|
CSCD被引
26
次
|
|
|
|
20.
Wang-Erlandsson L. Contrasting roles of interception and transpiration in the hydrological cycle-Part 1:Temporal characteristics over land.
Earth System Dynamics,2014,5(2):441-469
|
CSCD被引
4
次
|
|
|
|
|