大型离子探针分析熔体包裹体微量元素组成
Determination of trace elements in melt inclusions by secondary ion mass spectrometry
查看参考文献32篇
文摘
|
熔体包裹体是矿物在结晶过程中捕获的岩浆小液滴,记录了岩浆起源和演化等重要信息。本研究利用CAMECA IMS 1280-HR型SIMS,建立了25个熔体包裹体微量元素的分析方法。使用O_2~–一次离子束轰击样品表面,束流4~10 nA。一次离子束在样品表面的束斑直径为20~30 μm。五个地质玻璃标样(NIST612、BHVO-2G、 BCR-2G、TB-1G和GSD-1G)的分析结果显示,分析精度和准确度与元素单位电流信号强度存在显著相关关系。单位电流信号强度大于12 s~(–1)的元素分析精度优于10%,单位电流信号强度小于12 s~(–1)的元素分析精度优于15%(Er和Lu的分析精度优于20%)。所有元素分析结果与推荐值的偏差小于20%。使用本方法对来自夏威夷玄武岩中的熔体包裹体进行了微量元素分析,分析结果与全岩数据有较好的一致性。另外,为方便数据处理,本研究采用MATLAB编写了SIMSTraElement程序包,可以对SIMS测试的微量元素数据进行快速便捷的处理。 |
其他语种文摘
|
Melt inclusions are small magma drops captured by mineral crystals during magmatic processes and record useful information regarding magmatic origin and evolution. Using CAMECA IMS 1280-HR secondary ion mass spectrometry (SIMS), this study established an analytical method for 25 trace elements measured in melt inclusions. O_2~– was used as the primary ion with a current of approximately 4–10 nA to bombard the sample surface. The beam ellipsoidal spot was approximately 20 μm×30 μm in size. The results of the five geological reference glasses (NIST612, BHVO-2G, BCR-2G, TB-1G, and GSD-1G) indicate that analytical precision and accuracy have a strong correlation with elemental concentration. The precisions for the elements with concentrations higher than 10 μg/g are better than 10% (2SD), and for elements with concentrations lower than 10 μg/g they are better than 15% (for Er and Lu, they are approximately 18%). The bias of all the measured elemental concentrations from their preferred values are within ±20%. Using the present method, olivine-hosted melt inclusions from a Hawaiian basalt were measured. The results are consistent with the whole-rock data. Finally, a MATLAB program termed SIMSTraElement is available for public use was developed, providing fast, convenient data reduction for trace-element determination. |
来源
|
地球化学
,2019,48(1):1-8 【核心库】
|
DOI
|
10.19700/j.0379-1726.2019.01.001
|
关键词
|
离子探针
;
熔体包裹体
;
微量元素
;
微区分析
;
玻璃标样
|
地址
|
1.
中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东, 广州, 510640
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
广东省广州市科技计划项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:6418587
|
参考文献 共
32
共2页
|
1.
Cannatelli C. Understanding a volcano through a droplet:A melt inclusion approach.
J Geochem Explor,2016,171:4-19
|
CSCD被引
5
次
|
|
|
|
2.
Kent A J R. Melt inclusions in basaltic and related volcanic rocks.
Rev Miner Geochem,2008,69(1):273-331
|
CSCD被引
22
次
|
|
|
|
3.
Qian S P. Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton:Implications for petrogenesis and mantle source.
Chem Geol,2015,401:111-125
|
CSCD被引
22
次
|
|
|
|
4.
Ren Z Y. The chemical structure of the Hawaiian mantle plume.
Nature,2005,436(7052):837-840
|
CSCD被引
27
次
|
|
|
|
5.
Sobolev A V. Recycled oceanic crust observed in ghost plagioclase within the source of Mauna Loa lavas.
Nature,2000,404(6781):986-990
|
CSCD被引
30
次
|
|
|
|
6.
Sours-Page R. Melt inclusions as indicators of parental magma diversity on the northern East Pacific Rise.
Chem Geol,2002,183(1):237-261
|
CSCD被引
6
次
|
|
|
|
7.
Spilliaert N. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy).
J Geoph Res:Solid Earth,2006,111:B04203
|
CSCD被引
1
次
|
|
|
|
8.
Thomas J B. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon.
Geochim Cosmochim Acta,2002,66(16):2887-2901
|
CSCD被引
13
次
|
|
|
|
9.
Hudgins T R. Melt inclusion evidence for CO_2-rich melts beneath the western branch of the East African Rift:Implications for long-term storage of volatiles in the deep lithospheric mantle.
Contrib Mineral Petrol,2015,169(5):1-46
|
CSCD被引
6
次
|
|
|
|
10.
张春来. 四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示.
地球化学,2011,40(2):109-125
|
CSCD被引
10
次
|
|
|
|
11.
Taylor R P. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS).
Geochim Cosmochim Acta,1997,61(13):2559-2567
|
CSCD被引
9
次
|
|
|
|
12.
Halter W E. Major to trace element analysis of melt inclusions by laserablation ICP-MS:Methods of quantification.
Chem Geol,2002,183(1):63-86
|
CSCD被引
23
次
|
|
|
|
13.
Zajacz Z. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals:Quantification, data analysis and mineral/melt partitioning.
Geochim Cosmochim Acta,2007,71(4):1021-1040
|
CSCD被引
22
次
|
|
|
|
14.
Sobolev A V. Melt inclusions in minerals as a source of principle petrological information.
Petrology,1996,4(3):209-220
|
CSCD被引
14
次
|
|
|
|
15.
Shimizu N. The geochemistry of olivine-hosted melt inclusions in a famous basalt ALV519-4-1.
Phys Earth Planet Inter,1998,107(1/3):183-201
|
CSCD被引
1
次
|
|
|
|
16.
Portnyagin M. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H_2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc.
Earth Planet Sci Lett,2007,255(1):53-69
|
CSCD被引
11
次
|
|
|
|
17.
Maclennan J. Lead isotope variability in olivine-hosted melt inclusions from Iceland.
Geochim Cosmochim Acta,2008,72(16):4159-4176
|
CSCD被引
4
次
|
|
|
|
18.
Jackson M G. Ultra-depleted melts in olivine-hosted melt inclusions from the Ontong Java Plateau.
Chem Geol,2015,414:124-137
|
CSCD被引
1
次
|
|
|
|
19.
Li Q L. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry.
Chem Geol,2010,269(3/4):396-405
|
CSCD被引
14
次
|
|
|
|
20.
Li X H. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization.
Geochem Geoph Geos,2009,10(6):Q04010
|
CSCD被引
230
次
|
|
|
|
|