Ternary core-shell structured transition metal chalcogenide for hybrid electrochemical capacitor
查看参考文献37篇
文摘
|
Hybrid structured semiconductor nanomaterials possess excellent electrochemical performances owing to the synergistic effects from two components.Herein we report a novel CoMo_2S_4@Zn-Co-S core-shell structure as the electrode materials for asymmetric supercapacitor.The unique electrode structure is beneficial to rapid electron transport and the ion diffusion due to the existence of many vast channels.The as-synthesized core-shell structured electrode exhibits an overall improved electrochemical performance.Moreover,a quasi-solid state asymmetric supercapacitor is fabricated.It reveals a specific capacitance of 0.84 C/cm~2 collected at 4 mA/cm~2 and an energy density of 1.87 mWh/cm~3 at a power density of 31.99 W/cm~3. |
来源
|
Chinese Chemical Letters
,2018,29(12):1799-1803 【核心库】
|
DOI
|
10.1016/j.cclet.2018.11.019
|
关键词
|
CoMo_2S_4@Zn-Co-S
;
Core-shell structure
;
Supercapacitor
;
Specific capacitance
;
High energy density
|
地址
|
School of Materials Science and Engineering,Shenyang University of Technology, Shenyang, 110870
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1001-8417 |
学科
|
一般工业技术;电工技术 |
基金
|
supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua University
|
文献收藏号
|
CSCD:6416688
|
参考文献 共
37
共2页
|
1.
Jiao Y.
Nano Energy,2014,10:90-98
|
CSCD被引
15
次
|
|
|
|
2.
Yuan H. A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion.
Chin. Chem. Lett,2017,28:2180-2194
|
CSCD被引
35
次
|
|
|
|
3.
Wu X.
Nano Energy,2017,42:143-150
|
CSCD被引
11
次
|
|
|
|
4.
Han Y. Core-shell nanostructure of single-wall carbon nanotubes and covalent organic frameworks for supercapacitors.
Chin. Chem. Lett,2017,28:2269-2273
|
CSCD被引
9
次
|
|
|
|
5.
Jiang W.
Inorg. Chem. Front,2017,4:1642-1648
|
CSCD被引
5
次
|
|
|
|
6.
Heydari H. Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes.
J. Energy Chem,2017,26:762-767
|
CSCD被引
4
次
|
|
|
|
7.
Jiang W.
Mater. Res. Bullet,2017,93:303-309
|
CSCD被引
6
次
|
|
|
|
8.
Miller J R.
Science,2008,321:651-652
|
CSCD被引
219
次
|
|
|
|
9.
Zhang Z G.
J. Energy Chem,2017,26:1260-1266
|
CSCD被引
11
次
|
|
|
|
10.
Xing L.
Dalton Trans,2018,47:5687-5694
|
CSCD被引
6
次
|
|
|
|
11.
Deori K.
ACS Appl. Mater. Interfaces,2013,5:10665-10672
|
CSCD被引
9
次
|
|
|
|
12.
Liu C.
Inorg. Chem. Front,2018,5:835-843
|
CSCD被引
8
次
|
|
|
|
13.
Wang Q F.
Nano Energy,2014,8:44-51
|
CSCD被引
21
次
|
|
|
|
14.
Wu X.
Nano Energy,2017,31:410-417
|
CSCD被引
22
次
|
|
|
|
15.
Liu C.
Mater. Res. Bullet,2018,103:55-62
|
CSCD被引
7
次
|
|
|
|
16.
Chen H C.
J. Power Sour,2014,254:249-257
|
CSCD被引
26
次
|
|
|
|
17.
Pu J.
Phys. Chem. Chem. Phys,2014,16:785-791
|
CSCD被引
9
次
|
|
|
|
18.
Cheng W.
Chin. J. Chem,2017,8:1303-1308
|
CSCD被引
1
次
|
|
|
|
19.
Li C.
Adv. Energy Mater,2018,8:1-12
|
CSCD被引
3
次
|
|
|
|
20.
Xiao X C.
Ionics,2018,24:2435-2443
|
CSCD被引
2
次
|
|
|
|
|