定量表征压实和胶结作用的砂岩声波速度岩石物理模型
Rock physics modelling for acoustic velocities of sandstone considering effects of cementation and compaction
查看参考文献28篇
文摘
|
成岩作用是影响砂岩声波速度的地质因素之一,定量表征压实和胶结作用的砂岩声波速度岩石物理模型具有重要的理论和实践应用意义.选取视压实率和视胶结率定量表征砂岩成岩作用,通过建立视压实率与颗粒配位数的关系将压实作用的影响引入修正的定量表征胶结作用的CCT模型,最终建立了一种能够定量表征压实和胶结作用对砂岩声波速度影响的岩石物理模型.理论考察发现,随胶结率的增大,岩石声波速度首先迅速增大,随后趋于稳定;随视压实率增大,岩石声波速度同样逐渐增大,当胶结率较大时声波速度变化更为明显.为了验证该声波速度模型,分别对人造砂岩和天然样品进行了声波速度实验观测,结果表明:实验结果与理论分析的趋势吻合良好.该模型易于使用,能够为应用地震和测井资料识别有利储层、定量评价孔隙度以及开展横波速度预测等应用提供理论基础. |
其他语种文摘
|
Diagenesis plays an important role in controlling the acoustic velocities of sandstone.Hence,it is of great importance to develop the rock physics model to quantify the effects of compaction and cementation on the acoustic velocities of sandstone for both the theory and application.Using the apparent compaction and cementation rates,we can quantify the diagenesis degree of the sandstone.The model is then developed based on the modified Contact Cement Theory(CCT),which quantifies the effects of cementation on sandstone elastic moduli.By relating the apparent compaction rate to the grain coordination number,the effects of compaction can be incorporated into the modified CCT.To illustrate these effects,a numerical example is given.The results show that the elastic wave velocities increase rapidly with the cementation rate initially,then keep nearly constant.Meanwhile,the velocities also increase with the compaction rate.which is more obvious under the high cementation rate.To validate our model,the theoretical predictions are compared with the ultrasonic measurements on both the synthetic and natural sandstone samples,which show good agreement between them.The proposed model is easy to use and provides the theoretical basis for identifying the good formations,quantifying the porosity,and predicting the shear wave velocities through the seismic or logging data. |
来源
|
地球物理学报
,2018,61(12):5044-5051 【核心库】
|
DOI
|
10.6038/cjg2018m0214
|
关键词
|
砂岩
;
声波速度
;
压实作用
;
胶结作用
;
岩石物理
|
地址
|
1.
中国石油大学(华东)地球科学与技术学院, 山东, 青岛, 266580
2.
南方科技大学地球与空间科学系, 广东, 深圳, 518055
3.
新疆砾岩油藏实验室, 新疆砾岩油藏实验室, 新疆, 克拉玛依, 833400
4.
新疆油田公司勘探开发研究院, 新疆, 克拉玛依, 834000
5.
中石化东北油气分公司储层及含油气性预测攻关项目团队, 长春, 130062
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0001-5733 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
国家重大科技专项
;
“十三五”专项
|
文献收藏号
|
CSCD:6389640
|
参考文献 共
28
共2页
|
1.
Agersborg R. Modeling of elasticity effects of sandstone compaction using coated inclusions.
Geophysics,2011,76(3):E69-E79
|
CSCD被引
2
次
|
|
|
|
2.
Brandt H. A study of the speed of sound in porous granular media.
Journal of Applied Mechanics,1955,22:479-486
|
CSCD被引
13
次
|
|
|
|
3.
Chen G J. Chlorite cement and its effect on the reservoir quality of sandstones from the Panyu low-uplift, Pearl River Mouth Basin.
Petroleum Science,2011,8(2):143-150
|
CSCD被引
14
次
|
|
|
|
4.
David C. Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust.
Pure and Applied Geophysics,1994,143(1/3):425-456
|
CSCD被引
37
次
|
|
|
|
5.
Digby P J. The effective elastic moduli of porous granular rocks.
Journal of Applied Mechanics,1981,48(4):803-808
|
CSCD被引
26
次
|
|
|
|
6.
Dvorkin J. Elastic moduli of cemented sphere packs.
Mechanics of Materials,1999,31(7):461-469
|
CSCD被引
7
次
|
|
|
|
7.
Dvorkin J. The effect of cementation on the elastic properties of granular material.
Mechanics of Materials,1991,12(3/4):207-217
|
CSCD被引
11
次
|
|
|
|
8.
Dvorkin J. Elasticity of high-porosity sandstones: Theory for two North Sea data sets.
Geophysics,1996,61(5):1363-1370
|
CSCD被引
66
次
|
|
|
|
9.
Dvorkin J. Effective properties of cemented granular materials.
Mechanics of Materials,1994,18(4):351-366
|
CSCD被引
23
次
|
|
|
|
10.
Dvorkin J. Contact laws for cemented grains: implications for grain and cement failure.
International Journal of Solids and Structures,1995,32(17/18):2497-2510
|
CSCD被引
3
次
|
|
|
|
11.
Guo J X. Rock physics modelling of acoustic velocities for heavy oil sand.
Journal of Petroleum Science and Engineering,2016,145:436-443
|
CSCD被引
2
次
|
|
|
|
12.
Hertz H. Uber die Beruhrung fester elastischer Korper(On the contact of elastic solids).
Journal fur die Reine und Andgewandte Mathematik,1882,92:156-171
|
CSCD被引
3
次
|
|
|
|
13.
Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones.
AAPG Bulletin,1987,71:633-642
|
CSCD被引
182
次
|
|
|
|
14.
Jenkins J. Fluctuations and the effective moduli of an isotropic,random aggregate of identical, frictionless spheres.
Journal of the Mechanics and Physics of Solids,2005,53(1):197-225
|
CSCD被引
2
次
|
|
|
|
15.
Li H. Rock physics modeling of unconsolidated sands:Accounting for partial friction grain contacts and heterogeneous stress field.
Journal of Computational Acoustics,2015,23(4):1540001
|
CSCD被引
1
次
|
|
|
|
16.
Madadi M. A modified coherent potential approximation:Grain-contact moduli and coordination-number effect.
Geophysics,2012,77(3):WA141-WA148
|
CSCD被引
1
次
|
|
|
|
17.
Madadi M. A finite-element study of the influence of grain contacts on the elastic properties of unconsolidated sandstones.
International Journal of Rock Mechanics and Mining Sciences,2017,93:226-233
|
CSCD被引
5
次
|
|
|
|
18.
Mindlin R D. Compliance of elastic bodies in contact.
Journal of Applied Mechanics,1949,16:259-268
|
CSCD被引
165
次
|
|
|
|
19.
Mukerji T.
The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media.2nd ed,2009
|
CSCD被引
1
次
|
|
|
|
20.
Murphy III W F.
Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials[Ph. D.thesis],1982
|
CSCD被引
2
次
|
|
|
|
|