折返路径光学湍流激光成像探测技术研究
Research on Technique of Fold Pass Laser Imaging and Detection for Atmospheric Optical Turbulence
查看参考文献17篇
文摘
|
分析了折返路径光学湍流激光成像探测技术发展的背景和意义,阐述了湍流大气中的折返路径激光传输物理过程及其数学模型。利用构建的实验系统,获取了人造流场和自然湍流场中动态变化的激光散斑回波图像,分析了图像的典型特征.计算表明:利用低通滤波算法可将激光光斑分解成低频的阴影和高频的散斑亮点图像;对相邻的两帧阴影图像进行互相关运算,可以获得二维的横向风场矢量,从而实现湍流场及其中涡旋结构的可视化,同时显示出湍流场在空间上的各向异性。提出了若干有待探究的科学问题,例如如何利用风场矢量提取光学湍流的尺度参数,以及如何利用散斑亮点结合背景纹影技术来分析湍流场结构等,作为下一步的研究目标。 |
其他语种文摘
|
The background and meaning of developing the technique of fold pass laser imaging and detection for atmospheric optical turbulence are analyzed, and the physical processes and mathematic models of fold pass laser transmission are represented. Using the constructed experimental system, the echoed dynamic laser speckle images for man-made air flow and natural turbulence flow are obtained. The typical characteristics of the images are described. Calculation of the images with the algorithm of low pass filtering show that the images can be decomposed into low frequency shadows and high frequency bright dots. The mutual correlation of the adjacent shadows can produce the two dimensional vector winds and then visualize the vortexes in the turbulence field. Meanwhile, the anisotropy in the turbulence field can be disclosed. Some scientific problems such as how to extract turbulence scalar parameters from the vector wind, and how to retrieve the structure of optical turbulence from the bright dots in the speckles combined with the principle of background oriented schlieren are proposed, which would be investigated in the next step. |
来源
|
大气与环境光学学报
,2018,13(6):417-424 【扩展库】
|
DOI
|
10.3969/j.issn.1673-6141.2018.06.002
|
关键词
|
大气光学湍流
;
折返路径激光传输
;
3M反光膜
;
激光散斑
;
湍流可视化
|
地址
|
中国科学院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1673-6141 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6374913
|
参考文献 共
17
共1页
|
1.
Hart M. Recent advances in astronomical adaptive optics.
Applied Optics,2010,49(16):D17-D29
|
CSCD被引
1
次
|
|
|
|
2.
Boggess A. The history and promise of the Hubble space telescope.
Optics & Photonics News,1990,1(3):9-16
|
CSCD被引
1
次
|
|
|
|
3.
Buck A L. Effects of the atmosphere on laser beam propagation.
Applied Optics,1967,6(4):703-708
|
CSCD被引
3
次
|
|
|
|
4.
Ricklin J C. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication.
Journal of the Optical Society of America A,2002,19(9):1794-1802
|
CSCD被引
72
次
|
|
|
|
5.
梅海平.
大气光学湍流的光纤测量技术研究. 博士论文,2007
|
CSCD被引
1
次
|
|
|
|
6.
Xiao S M. Fiber optical turbulence sensing system.
Proceedings of SPIE. 8417,2012:841733
|
CSCD被引
1
次
|
|
|
|
7.
李华贵. 用Hartmann-Shack波前传感器测量大气湍流特征.
光电工程,1995,22(2):46-49
|
CSCD被引
2
次
|
|
|
|
8.
Rao C H. Adaptive-optics compensation by distributed beacons for non-Kolmogorov turbulence.
Applied Optics,2001,40(21):3441-3449
|
CSCD被引
5
次
|
|
|
|
9.
饶瑞中. 非Kolmogorov大气湍流中的光传播及其对光电工程的影响.
光学学报,2015,35(5):0501003
|
CSCD被引
6
次
|
|
|
|
10.
梅海平. 非Kolmogorov大气湍流温度谱标度指数的测量与分析.
强激光与粒子束,2006,18(9):1423-1427
|
CSCD被引
6
次
|
|
|
|
11.
Lukin V P. Causes of non-Kolmogorov turbulence in the atmosphere.
Applied Optics,2016,55(12):B163-B168
|
CSCD被引
2
次
|
|
|
|
12.
王钰茹. 湍流大气中折返路径激光成像探测实验.
中国激光,2018,45(4):0401008
|
CSCD被引
6
次
|
|
|
|
13.
Dudorov V V. Speckle-field propagation in "frozen" turbulence:brightness function approach.
Journal of the Optical Society of America A,2006,23(8):1924-1936
|
CSCD被引
2
次
|
|
|
|
14.
韦宏艳. 斜程大气湍流中漫射目标的散射特性.
物理学报,2008,57(10):6666-6672
|
CSCD被引
14
次
|
|
|
|
15.
Hargather M J. Retro-reflective shadowgraph technique for large-scale flow visualization.
Applied Optics,2009,48(22):4449-4457
|
CSCD被引
6
次
|
|
|
|
16.
Settles G S. A review of recent developments in schlieren and shadowgraph techniques.
Measurement Science and Technology,2017,28(4):042001
|
CSCD被引
18
次
|
|
|
|
17.
Raffel M. Background-oriented schlieren (BOS) techniques.
Experiments in Fluids,2015,56:60
|
CSCD被引
9
次
|
|
|
|
|