顾及道路网约束的商业设施空间点模式分析
Network-Constrained Spatial Point Pattern Analysis for Commercial Facilities
查看参考文献20篇
文摘
|
基于社交网络点评数据,考虑到城市的路网结构特征,采用道路网约束下的核密度估计方法研究城市商业设施的空间分布模式。同时,结合商业设施的顾客光临次数和评分对核密度估计进行加权,发现了城市商业设施顾客光临和顾客满意度在空间上的差异性,即在部分路段商业设施的分布、顾客光临分布以及顾客满意度分布不匹配。为了分析这种空间差异性,针对城市的路网结构特征以及社交网络点评数据特征,提出了道路网约束下的G统计量作为指标的空间自相关分析方法,通过量化分析发现了高值聚集和低值聚集的路段,反映了顾客光临和顾客满意度在空间上的分布模式,揭示了顾客满意度高或低的商业设施在空间上的聚集分布。这些分析结果为城市规划、商业设施布局、选址问题等提供了定量化的参考依据。 |
其他语种文摘
|
Based on social network reviews data and considering the structural features of the road network, we apply network kernel density estimation to study the spatial distribution pattern of commercial facilities.Meanwhile,the number and satisfaction of customers corresponding to the commercial facilities are used as a weighted index for network kernel density estimation,which reveals the spatial difference in consumer satisfaction of the commercial facilities.In some road sections,the spatial distribution of commercial facilities does not match the spatial distribution of the number and satisfaction of customers.In order to further analyze the spatial difference in consumer satisfaction of the commercial facilities,aimed at the structural features of the road network and the characteristics of the social network reviews data,this paper proposes network-constrained Getis-Ord Gifor quantitative analysis, The high-high road segment and low-low road segment are revealed,which reflects the spatial distribution patterns of the number and satisfaction of customers,and demonstrates the aggregated distribution of the satisfied or unsatisfied commercial facilities.These results will provide a quantitative reference for urban planning,commercial facilities layout,and location problem. |
来源
|
武汉大学学报. 信息科学版
,2018,43(11):1746-1752 【核心库】
|
DOI
|
10.13203/j.whugis20160558
|
关键词
|
社交网络点评数据
;
商业设施
;
道路网约束
;
核密度估计
;
空间自相关
|
地址
|
1.
武汉大学, 测绘遥感信息工程国家重点实验室, 湖北, 武汉, 430079
2.
地球空间信息技术协同创新中心, 地球空间信息技术协同创新中心, 湖北, 武汉, 430079
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1671-8860 |
学科
|
测绘学 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
测绘地理信息公益性行业科研专项经费
|
文献收藏号
|
CSCD:6374599
|
参考文献 共
20
共1页
|
1.
胡庆武. 利用位置签到数据探索城市热点与商圈.
测绘学报,2014,43(3):314-321
|
CSCD被引
38
次
|
|
|
|
2.
禹文豪. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测.
武汉大学学报·信息科学版,2016,41(2):221-227
|
CSCD被引
80
次
|
|
|
|
3.
Okabe A. Generalized Network Voronoi Diagrams:Concepts,Computational Methods and Applications.
International Journal of Geographical Information Science,2007,22(9):965-994
|
CSCD被引
25
次
|
|
|
|
4.
Li Q. Dynamic Accessibility Mapping Using Floating Car Data:A Network-Constrained Density Estimation Approach.
Journal of Transport Geography,2011,19(3):379-393
|
CSCD被引
11
次
|
|
|
|
5.
Tang L. A Network Kernel Density Estimation for Linear Features in Space-Time Analysis of Big Trace Data.
International Journal of Geographical Information Science,2015,30(9):1-21
|
CSCD被引
5
次
|
|
|
|
6.
蒋波涛. 使用点评数据探测城市商业服务设施的发展规律.
测绘学报,2015,44(9):1022-1028
|
CSCD被引
8
次
|
|
|
|
7.
She B. Weighted Network Voronoi Diagrams for Local Spatial Analysis.
Computers Environment & Urban Systems,2015,52:70-80
|
CSCD被引
6
次
|
|
|
|
8.
Yamada I. Comparison of Planar and Network K-Functions in Traffic Accident Analysis.
Journal of Transport Geography,2004,12(2):149-158
|
CSCD被引
7
次
|
|
|
|
9.
Garrocho C. Calculating Intraurban Agglomeration of Economic Units with Planar and Network K-Functions.
Urban Geography,2013,34(2):261-286
|
CSCD被引
1
次
|
|
|
|
10.
Lamb D S. The Network KFunction in Context:Examining the Effects of Network Structure on the Network K-Function.
Transactions in GIS,2016,20(3):448-460
|
CSCD被引
1
次
|
|
|
|
11.
Xu X. The K-Function Analysis of Space-Time Point Pattern on Road Network.
The 19th International Conference on Geoinformatics,2011
|
CSCD被引
1
次
|
|
|
|
12.
Okabe A. A Kernel Density Estimation Method for Networks, Its Computational Method and a GIS-Based Tool.
International Journal of Geographical Information Science,2009,23(1):7-32
|
CSCD被引
44
次
|
|
|
|
13.
Rui Y. Network-Constrained and Category-Based Point Pattern Analysis for Suguo Retail Stores in Nanjing,China.
International Journal of Geographical Information Science,2015,30(2):1-14
|
CSCD被引
7
次
|
|
|
|
14.
Ai T. Generation of Constrained Network Voronoi Diagram Using Linear Tessellation and Expansion Method.
Computers Environment & Urban Systems,2015,51:83-96
|
CSCD被引
8
次
|
|
|
|
15.
Porter M D. Evaluating Temporally Weighted Kernel Density Methods for Predicting the Next Event Location in a Series.
Annals of GIS,2012,18(3):225-240
|
CSCD被引
4
次
|
|
|
|
16.
Bil M. Identification of Hazardous Road Locations of Traffic Accidents by Means of Kernel Density Estimation and Cluster Significance Evaluation.
Accident Analysis & Prevention,2013,55(3):265-273
|
CSCD被引
7
次
|
|
|
|
17.
Nie K. A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash:A Case Study from Wuhan,China.
Sustainability,2015,7(7):2662-2677
|
CSCD被引
2
次
|
|
|
|
18.
Xie Z. Kernel Density Estimation of Traffic Accidents in a Network Space.
Computers Environment & Urban Systems,2008,32(5):396-406
|
CSCD被引
57
次
|
|
|
|
19.
Ord J K. Local Spatial Autocorrelation Statistics:Distributional Issues and an Application.
Geographical Analysis,1995,27(4):286-306
|
CSCD被引
168
次
|
|
|
|
20.
Getis A. The Analysis of Spatial Association by Use of Distance Statistics.
Geographical Analysis,1992,24(3):189-206
|
CSCD被引
477
次
|
|
|
|
|