Fatigue crack tip plastic zone of α+β titanium alloy with Widmanstatten microstructure
查看参考文献45篇
文摘
|
The recent studies had focused on the fatigue crack propagation behaviors of α+β titanium alloys with Widmanstatten microstructure. The fascinated interest of this type of microstructure is due to the superior fatigue crack propagation resistance and fracture toughness as compared to other microstructures, which was believed to be related to the fatigue crack tip plastic zone (CTPZ). In this study, the plastic deformation in fatigue CTPZ of Ti-6Al-4V titanium alloy with Widmanstatten microstructure was characterized by scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The results showed that large-scale slipping and deformation twinning were generated in fatigue CTPZ due to the crystallographic feature of the Widmanstatten microstructure. The activation of twinning was related to the rank of Schmid factor (SF) and the diversity of twin variants developing behaviors reflected the influence of SF rank. The sizes of CTPZ under different stress intensity factors (K) were examined by the white-light coherence method, and the results revealed that the range of the plastic zone is enlarged with the increasing K (or crack length), while the plastic strain decreased rapidly with the increasing distance from the crack surface. The large-scale slipping and deformation twinning in Widmannstatten microstructure remarkably expanded the range of fatigue CTPZ, which would lead to the obvious larger size of the observed CTPZ than that of the theoretically calculated size. |
来源
|
Journal of Materials Science & Technology
,2018,34(11):2107-2115 【核心库】
|
DOI
|
10.1016/j.jmst.2018.03.012
|
关键词
|
Titanium alloy
;
Widmanstatten microstructure
;
CTPZ
;
Slip
;
Deformation twinning
|
地址
|
1.
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016
2.
University of Science and Technology of China (USTC), Hefei, 230026
3.
Northeastern University, Shenyang, 110089
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1005-0302 |
学科
|
金属学与金属工艺 |
基金
|
co-supported by the National Natural Science Foundation of China
;
Youth Innovation Promotion Association CAS
|
文献收藏号
|
CSCD:6373317
|
参考文献 共
45
共3页
|
1.
Froes F H.
JOM,1990,42:26-29
|
CSCD被引
5
次
|
|
|
|
2.
Firm K.
Materials Properties Handbook: Titanium Alloys, first ed,1994:3-4
|
CSCD被引
1
次
|
|
|
|
3.
Donachie Jr M J.
Titanium: A Technical Guide, second ed,2000:22-23
|
CSCD被引
1
次
|
|
|
|
4.
Williams J C.
Acta Mater,2003,51:5775-5799
|
CSCD被引
443
次
|
|
|
|
5.
Lutjering G.
Titanium: Engineering Materials and Processes, second ed,2007:3
|
CSCD被引
1
次
|
|
|
|
6.
Jha A K.
Eng. Fail. Anal,2010,17:1457-1465
|
CSCD被引
11
次
|
|
|
|
7.
Cai J.
Mater. Charact,2011,62:287-293
|
CSCD被引
5
次
|
|
|
|
8.
Hughes J I.
Inst. Mech. Eng. Part B J. Eng. Manuf,2004,218:1113-1123
|
CSCD被引
1
次
|
|
|
|
9.
Lutjering G.
DGM,1985,4:2068
|
CSCD被引
1
次
|
|
|
|
10.
Shademan S.
Mech. Mater,2004,36:161-175
|
CSCD被引
10
次
|
|
|
|
11.
Nalla R K.
Metall. Mater. Trans. A,2002,33:899-918
|
CSCD被引
15
次
|
|
|
|
12.
Yoder G R.
Metall. Trans. A,1979,10:1808-1810
|
CSCD被引
2
次
|
|
|
|
13.
Yoder G R.
Titanuim '80 Sci. Technol,1980,3:1865-1874
|
CSCD被引
1
次
|
|
|
|
14.
Lutjering G.
Titanuim '95 Sci. Technol,1995,4:2065-2084
|
CSCD被引
1
次
|
|
|
|
15.
Yoder G R.
Metall. Trans. A,1977,8:1737-1743
|
CSCD被引
10
次
|
|
|
|
16.
Yoder G R.
J. Eng. Mater. Technol,1977,99:313-318
|
CSCD被引
2
次
|
|
|
|
17.
Feng X. Influence of Processing Conditions on Microstructure and Mechanical Properties of Large Thin-Wall Centrifugal Ti–6Al–4V Casting.
J. Mater. Sci. Technol,2016,32:362-371
|
CSCD被引
14
次
|
|
|
|
18.
Hammouda M M I.
Int. J. Fatigue,2004,26:173-182
|
CSCD被引
2
次
|
|
|
|
19.
Toyosada M.
Int. J. Fatigue,2004,26:983-992
|
CSCD被引
7
次
|
|
|
|
20.
Toribio J.
Mater. Lett,2007,61:964-967
|
CSCD被引
2
次
|
|
|
|
|