帮助 关于我们

返回检索结果

基于神经网络的无人机云服务质量控制方法研究
A Network Control-based QoS-enhanced MAC for UAV Cloud

查看参考文献19篇

高昂 1,2   段渭军 1,2 *   李立欣 1   张会生 1   胡延苏 3  
文摘 无人机云通过动态卸载任务到云端进行高效处理,能够极大地提高无人机的智能水平。由于设计理念、任务环境、突发事件等因素,导致卸载的任务对网络服务质量(QoS)需求不尽相同。从控制角度研究无人机云系统的网络传输QoS控制问题,提出并实现了一种基于BP神经网络的双闭环接入控制方法,在最大化能量利用率的同时,实现绝对QoS和相对QoS保证。硬件实验结果表明,该方法不仅能够在任务动态变化时提供相对QoS和绝对QoS保证,并且在网络高负载下具有更高的吞吐量和能量利用率,在网络低负载下具有更低的能耗。
其他语种文摘 Unmanned aerial vehicle (UAV) cloud can greatly enhance the intelligence of unmanned system by dynamically uploading the compute-intensive applications to the cloud. The different UAV missions may have different quality of service (QoS) requirements due to the uncertainty of UAV missions and the fast-changing battlefield environment. A BP neuron network-based feedback differentiated control approach for QoS-aware (BPFD)-MAC in UAV cloud is proposed, which can support both absolute and relative QoS guarantees with the consideration of energy saving. The hardware experiments demonstrate the feasibility of BPFD-MAC. Under heavy loads, BPFD has better throughput and power use efficiency; and under light load, BPFD has lower total energy consumption.
来源 兵工学报 ,2018,39(9):1762-1771 【核心库】
DOI 10.3969/j.issn.1000-1093.2018.09.013
关键词 无人机云 ; 服务质量 ; 接入控制 ; 神经网络
地址

1. 西北工业大学电子信息学院, 陕西, 西安, 710072  

2. 物联网技术及应用国家地方联合工程实验室, 物联网技术及应用国家地方联合工程实验室, 陕西, 西安, 710072  

3. 长安大学电子与控制工程学院, 陕西, 西安, 710064

语种 中文
文献类型 研究性论文
ISSN 1000-1093
学科 航空
基金 中国博士后科学基金 ;  陕西省重点研发计划项目 ;  上海航天科技创新基金 ;  中央高校基础研究基金项目 ;  陕西省西安市科技计划项目
文献收藏号 CSCD:6371479

参考文献 共 19 共1页

1.  刘重. 未知环境下异构多无人机协同搜索打击中的联盟组建. 兵工学报,2015,36(12):2284-2297 CSCD被引 9    
2.  Luo F. Stability of cloud-based UAV systems supporting big data acquisition and processing. IEEE Transactions on Cloud Computing,2017,99:1-1 CSCD被引 1    
3.  Hu G. Cloud robotics: architecture, challenges and applications. IEEE Network,2012,26(3):21-28 CSCD被引 12    
4.  Kamei K. Cloud networked robotics. IEEE Network,2012,26(3):28-34 CSCD被引 2    
5.  Li F. Usage-specific semantic integration for cyber-physical robot systems. ACM Transactions on Embedded Computing Systems,2016,15(3):50 CSCD被引 3    
6.  Chaisiri S. Robust cloud resource provisioning for cloud computing environments. Proceedings of IEEE International Conference on Service-Oriented Computing and Applications,2011:1-8 CSCD被引 1    
7.  Pandey P. Dynamic collaboration between networked robots and clouds in resource-constrained environments. IEEE Transactions on Automation Science & Engineering,2015,12(2):471-480 CSCD被引 2    
8.  Saxena N. Dynamic duty cycle and adaptive contention window based QoS-MAC protocol for wireless multimedia sensor networks. Computer Networks,2008,52(13):2532-2542 CSCD被引 7    
9.  Subramanian A K. PRIN:a priority-based energy efficient MAC protocol for wireless sensor networks varying the sample inter-arrival time. Wireless Personal Communications,2016,92(3):1-19 CSCD被引 2    
10.  Jang Beakcheol. An asynchronous sche-duled MAC protocol for wireless sensor networks. Computer Networks,2013,57(1):85-98 CSCD被引 6    
11.  Naderi M Y. RF-MAC: a medium access control protocol for rechargeable sensor networks powered by wireless energy harvesting. IEEE Transactions on Wireless Communications,2014,13(7):3926-3937 CSCD被引 4    
12.  Chang B J. Cross-layer-based adaptive congestion and contention controls for accessing cloud services in 5G IEEE 802.11family wireless networks. Computer Communications,2017,106:33-45 CSCD被引 2    
13.  Ozen Y. Two tiered service differentiation mechanism for wireless multimedia sensor network MAC layers. Proceedings of Signal Processing and Communications Applications Conference,2015:2318-2321 CSCD被引 1    
14.  Natkaniec M. A survey of medium access mechanisms for providing QoS in Ad-Hoc networks. IEEE Communications Surveys & Tutorials,2013,15(2):592-620 CSCD被引 5    
15.  Barua S. Comparative study on priority based QOS aware MAC protocols for WSN. International Journal of Wireless & Mobile Networks,2014,6(5):175-181 CSCD被引 2    
16.  Gao A. A feedback approach for QoS-enhanced MAC in wireless sensor network. Journal of Sensors,2016(2):1-12 CSCD被引 2    
17.  Funahashi K I. On the approximate realization of continuous mappings by neural networks. Neural Networks,1989,2(3):183-192 CSCD被引 130    
18.  Man Z. A new adaptive back-propagation algorithm based on Lyapunov stability theory for neural networks. IEEE Transactions on Neural Networks,2006,17(6):1580-1591 CSCD被引 3    
19.  张国翊. 改进BP神经网络模型及其稳定性分析. 中南大学学报:自然科学版,2011,42(1):115-124 CSCD被引 22    
引证文献 3

1 陈智勇 基于信息素算法的校园物联网多路传输优化 系统仿真学报,2019,31(8):1719-1726
CSCD被引 1

2 王慧东 四旋翼无人机反步积分自适应控制器设计 兵工学报,2021,42(6):1283-1289
CSCD被引 6

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号