基于聚二甲基硅氧烷柔性可穿戴传感器研究进展
Research Progress in Flexible Wearable Strain Sensors Based on Polydimethylsiloxane
查看参考文献50篇
文摘
|
传统的电子应变传感器大多基于金属和半导体材料,其柔韧性和可穿戴特性较差。随着柔性电子材料的发展,可穿戴式柔性应变传感器呈现出巨大的市场前景。由于其具有生物相容性好同时兼具可穿戴性、高弹性和可拉伸性等特点逐渐成为研究热点。本文对近些年基于聚二甲基硅氧烷(PDMS)的压阻式和电容式柔性传感器的先进制备技术、性能及应用方面的研究进展进行了综述。最后对可穿戴式柔性传感器所面临的挑战做了简单讨论,并对其未来的发展方向进行了展望。 |
其他语种文摘
|
Traditional electronic strain sensors based on metal and semiconductor materials have poor flexibility and wear-ability,which are not applicable for stretchable sensors.With the development of flexible electronic materials,wearable electronic devices show great market prospects.Flexible strain sensors have many unique advantages,such as good biocompatibility,wearable,stretchability and elasticity,which become a hotspot of research.The research progress is the preparation technology, performance and application of PDMS based piezoresistive and capacitive flexible strain sensors were summarized in this paper.Finally,challenges,important directions and perspectives related to PDMS flexible strain sensors were prospected. |
来源
|
材料工程
,2018,46(11):13-24 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2018.000097
|
关键词
|
聚二甲基硅氧烷
;
柔性应变传感器
;
可穿戴
|
地址
|
1.
天津工业大学, 天津省部共建分离膜与膜过程国家重点实验室, 天津, 300387
2.
迪肯大学前沿纤维研究与创新中心, 澳大利亚, 吉朗, VIC3217
3.
南达科他矿业理工学院, 美国, 拉皮德城, SD57701
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
;
天津市自然科学基金
;
天津市科技发展计划项目
|
文献收藏号
|
CSCD:6366555
|
参考文献 共
50
共3页
|
1.
Amjadi M. Stretchable,skinmountable, and wearable strain sensors and their potential applications: a review.
Advanced Functional Materials,2016,26(11):1678-1698
|
CSCD被引
133
次
|
|
|
|
2.
Trung T Q. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare.
Advanced Materials,2016,28(22):4338-4372
|
CSCD被引
94
次
|
|
|
|
3.
Zang Y. Advances of flexible pressure sensors toward artificial intelligence and health care applications.
Materials Horizons,2015,2(2):25-59
|
CSCD被引
73
次
|
|
|
|
4.
Kuribara K. Organic transistors with high thermal stability for medical applications.
Nature Communications,2012,3(2):723
|
CSCD被引
11
次
|
|
|
|
5.
Yokota R. Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature.
High Performance Polymers,2001,13(2):61-72
|
CSCD被引
31
次
|
|
|
|
6.
Kaltenbrunner M. An ultra-lightweight design for imperceptible plastic electronics.
Nature,2013,499(7459):458-463
|
CSCD被引
99
次
|
|
|
|
7.
Li C H. A highly stretchable autonomous self-healing elastomer.
Nature Chemistry,2016,8(6):618-624
|
CSCD被引
104
次
|
|
|
|
8.
Jeong S H. Stretchable electronic devices:PDMS-based elastomer tuned soft,stretchable,and sticky for epidermal electronics.
Advanced Materials,2016,28(28):5730-5736
|
CSCD被引
1
次
|
|
|
|
9.
Wagner S. Materials for stretchable electronics.
Mrs Bulletin,2012,37(37):207-217
|
CSCD被引
15
次
|
|
|
|
10.
Wang X. Silk-molded flexible,ultrasensitive, and highly stable electronic skin for monitoring human physiological signals.
Advanced Materials,2014,26(9):1336-1342
|
CSCD被引
129
次
|
|
|
|
11.
Jeong Y R. Highly stretchable and sensitive strain sensors using fragmentized graphene foam.
Advanced Functional Materials,2015,25(27):4228-4236
|
CSCD被引
38
次
|
|
|
|
12.
Jian M. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures.
Advanced Functional Materials,2017,27:1606066
|
CSCD被引
66
次
|
|
|
|
13.
Li Y Q. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection.
Scientific Reports,2017,7:45013
|
CSCD被引
11
次
|
|
|
|
14.
Yao H B. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design.
Advanced Materials,2013,25(46):6692-6698
|
CSCD被引
80
次
|
|
|
|
15.
Liao X. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor.
Advanced Functional Materials,2015,25(16):2395-2401
|
CSCD被引
21
次
|
|
|
|
16.
Park J. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins.
ACS Nano,2014,8(5):4689-4697
|
CSCD被引
62
次
|
|
|
|
17.
Kong J H. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors.
Carbon,2014,77(10):199-207
|
CSCD被引
16
次
|
|
|
|
18.
Wu S. Novel electrically-conductive porous pdms/carbon nanofibre composites for deformable strain-sensors and conductors.
ACS Applied Materials &Interfaces,2017,9(16):14207-14215
|
CSCD被引
21
次
|
|
|
|
19.
Jiang J. Fabrication of transparent multilayer circuits by inkjet printing.
Advanced Materials,2016,28(7):1420-1426
|
CSCD被引
12
次
|
|
|
|
20.
Amjadi M. Highly stretchable and sensitive strain sensor based on silver nanowireelastomer nanocomposite.
ACS Nano,2014,8(5):5154-5163
|
CSCD被引
120
次
|
|
|
|
|