番茄褪绿病毒SYBR Green I实时荧光定量PCR方法
SYBR Green I quantitative real-time PCR ( qPCR) for Tomato chlorosis virus
查看参考文献30篇
文摘
|
根据番茄褪绿病毒( Tomato chlorosis virus,ToCV)热激蛋白70( Hsp70)的基因序列,设计ToCV实时荧光定量PCR特异引物.利用重组质粒ToCV-1为标准品建立SYBR Green I实时荧光定量方法.针对引物浓度、退火温度、特异性、灵敏度、重复性和稳定性进行系列优化.结果表明,最适退火温度为63℃,最适引物浓度为0.3 μmol·L~(-1).熔解曲线为特异性单峰,表明其特异性良好.建立的SYBR Green I实时荧光定量PCR较常规PCR灵敏100倍,且具有良好的重复性和稳定性.基于SYBR Green I实时荧光定量PCR技术建立的ToCV检测方法,速度快、特异性强、灵敏度高、重复性好,可以用于ToCV的定量检测. |
其他语种文摘
|
According to the heat shock protein 70 ( Hsp70) gene sequence of Tomato chlorosis virus ( ToCV) , a specific primer pair for ToCV real-time fluorescent quantitative PCR was designed. The recombinant plasmid ToCV-1 is used as a standard to establish a SYBR Green I real-time fluorescence quantitative method and a series of optimization include primers concentration,annealing temperature,specificity,sensitivity,reproducibility and stability were performed. The results showed that,the optimized annealing temperature is 63 ℃,and the primer concentration is 0.3 μmol·L~(-1). The melting curve for specific peak proved that this method has good specificity. By comparing with the sensitivity of conventional PCR,we found that the SYBR Green I real-time fluorescence quantitative PCR was 100 times more sensitive. The method has good repeatability and stability. The rapid detection method based on SYBR Green I real-time quantitative PCR has high speed,strong specificity, high sensiti-vity and good repeatability. It can be used for the quantitative detection of ToCV. |
来源
|
植物病理学报
,2018,48(5):700-706 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000230
|
关键词
|
番茄褪绿病毒
;
SYBR Green I实时荧光定量PCR
;
病毒检测
|
地址
|
1.
山东农业大学植物保护学院, 山东省蔬菜病虫生物学重点实验室;;山东果蔬优质高效生产协同创新中心, 泰安, 271018
2.
荣成市港湾街道办事处, 荣成, 264309
3.
潍坊科技学院, 寿光, 262700
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
山东省科技重大创新工程
;
山东省自然科学基金
;
潍坊市科学技术发展计划项目
|
文献收藏号
|
CSCD:6364853
|
参考文献 共
30
共2页
|
1.
Wisler G C. Tomato chlorosis virus:a new whitefly-transmitted,phloem-limited,bipartite Closterovirus of tomato.
Phytopathology,1998,88(5):402-409
|
CSCD被引
34
次
|
|
|
|
2.
Bese G. First report of Tomato chlorosis virus in tomato from Hungary.
Plant Disease,2011,95(3):363
|
CSCD被引
3
次
|
|
|
|
3.
Hirota T. Yellowing disease of tomato caused by Tomato chlorosis virus newly recognized in Japan.
Journal of General Plant Pathology,2010,76(2):168-171
|
CSCD被引
15
次
|
|
|
|
4.
Navas-Castillo J. Severe yellowing outbreaks in tomato in Spain associated with infections of Tomato chlorosis virus.
Plant Disease,2000,84(8):835-837
|
CSCD被引
8
次
|
|
|
|
5.
Arruabarrena A. First report of Tomato chlorosis virus infecting tomato crops in Uruguay.
Plant Disease,2014,98(10):1445
|
CSCD被引
2
次
|
|
|
|
6.
Zhao L M. Molecular identification of mixed infection of Tomato chlorosis virus and Tomato yellow leaf curl virus (in Chinese).
中国蔬菜,2014,1(12):15-20
|
CSCD被引
1
次
|
|
|
|
7.
Dovas C I. Multiplex detection of Criniviruses associated with epidemics of a yellowing disease of tomato in Greece.
Plant Disease,2002,86(12):1345-1349
|
CSCD被引
11
次
|
|
|
|
8.
Louro D. Occurrence and diagnosis of Tomato chlorosis virus in Portugal.
European Journal of Plant Pathology,2000,106(6):589-592
|
CSCD被引
8
次
|
|
|
|
9.
Jacquemond M. Serological and molecular detection of Tomato chlorosis virus and Tomato infectious chlorosis virus in tomato.
Plant Pathology,2009,58(2):210-220
|
CSCD被引
9
次
|
|
|
|
10.
Tiberini A. Oligonucleotide microarray-based detection and identification of 10 major tomato viruses.
Journal of Virological Methods,2010,168(1/2):133-140
|
CSCD被引
1
次
|
|
|
|
11.
Papayiannis L C. Rapid discrimination of Tomato chlorosis virus,Tomato infectious chlorosis virus and co-amplification of plant internal control using real-time RT-PCR.
Journal of Virological Methods,2011,176(1):53-59
|
CSCD被引
5
次
|
|
|
|
12.
Zhao L M. Reverse transcription loop-mediated isothermal amplification assay for detecting Tomato chlorosis virus.
Journal of Virological Methods,2014,213(1):93-97
|
CSCD被引
1
次
|
|
|
|
13.
Karwitha M. Rapid detection of Tomato chlorosis virus from infected plant and whitefly by one-step reverse transcription loop-mediated isothermal amplification.
Journal of Phytopathology,2016,164(4):255-263
|
CSCD被引
2
次
|
|
|
|
14.
Wu K C. Fast and effective total RNA extraction from different tissues in 3 crops through the Trizol reagent method (in Chinese).
南方农业学报,2012,43(12):1934-1939
|
CSCD被引
5
次
|
|
|
|
15.
Sun B J. Establishment of SYBR Green I real-time PCR for quantitatively detecting Rhizoctonia cerealis in winter wheat (in Chinese).
中国农业科学,2015,48(1):55-62
|
CSCD被引
2
次
|
|
|
|
16.
Tsai W S. First report of the occurrence of Tomato chlorosis virus and Tomato infectious chlorosis virus in Taiwan.
Plant Disease,2004,88(3):311
|
CSCD被引
25
次
|
|
|
|
17.
Zhou T. Alarming the transmission and damage of Tomato chlorosis virus in China (in Chinese).
植物保护,2014,40(5):196-199
|
CSCD被引
3
次
|
|
|
|
18.
Liu Y G. Outbreak of Tomato chlorosis virus in Shandong and its control measures (in Chinese).
中国蔬菜,2014,1(5):67-69
|
CSCD被引
4
次
|
|
|
|
19.
Sun G Z. Molecular detection and identification of Tomato chlorosis virus infecting greenhouse-grown tomato plants in Hebei province (in Chinese).
北方园艺,2015,39(9):95-98
|
CSCD被引
2
次
|
|
|
|
20.
Gao L L. Molecular detection and identification of Tomato chlorosis virus in Tianjin (in Chinese).
华北农学报,2015,30(3):211-215
|
CSCD被引
2
次
|
|
|
|
|