基于析因数值实验方法的蒸发皿蒸发归因研究
A new method to attribute changes of pan evaporation: The experimental detrending approach
查看参考文献31篇
文摘
|
蒸发皿蒸发是唯一可长时间大范围观测的潜在蒸发,其准确估算和长时间序列趋势变化归因分析,对变化环境下干旱研究、水文过程理解分析与预估具有重要意义。本文筛选出416个具有连续观测的气象台站资料,率定了PenPan模型中适合模拟中国20 cm口径(D20)蒸发皿蒸发的风速函数,发展了基于去趋势法的析因数值实验归因法,对比了此方法与常用的偏导归因法在1960-2014年、1960-1993年(“蒸发悖论”时段)及1993-2014年(“蒸发悖论”消失)蒸发皿蒸发趋势变化的归因结果。结果表明,使用新率定的风速函数f_q(u_2)= 3.977 × 10~(-8)(1 + 0.505u2)能更准确模拟中国D20蒸发皿蒸发;相较于偏导归因法结果,析因数值实验法也能对蒸发皿蒸发趋势变化进行定量归因分析,且归因结果略优于偏导归因法结果;此外,可利用析因数值实验法的基准态信息来对偏导归因法结果进行校正,从而更准确地对蒸发皿蒸发趋势变化进行归因分析,加深对蒸发皿蒸发趋势变化的理解,为水文水循环研究准确分析提供保障。 |
其他语种文摘
|
Pan evaporation is the only long- term observation of potential evaporation around the world. In analyzing and predicting how droughts and hydrological cycles might change in a warming climate, change of pan evaporation is one crucial element to be understood. In this paper, we chose 416 sites with continuous monthly observations over 1960-2014 in China. We calibrated the wind function in the PenPan model to improve the estimation of pan evaporation. We developed a new approach, i.e., the experimental detrending (ED) approach, and made comparison with the traditional partial differential (PD) method in attributing changes of pan evaporation for the periods of 1960- 2014, 1960- 1993 (evaporation paradox) and 1993- 2014 (evaporation paradox disappeared). The results first showed that improvement in estimating pan evaporation can be made when using the new calibrated wind function: f_q(u_2)=3.977×10~(-8) (1+0.505u2). The comparison then showed that both methods can well attribute changes of pan evaporation, and the ED approach performs slightly better than the traditional PD method. In addition, the ED approach can help make effective adjustment for the PD method in attribution analysis so as to better understand the change of pan evaporation. Hence, the ED approach is recommended to assist a better understanding and prediction of water- energy cycles in a changing climate. |
来源
|
地理学报
,2018,73(11):2064-2074 【核心库】
|
DOI
|
10.11821/dlxb201811002
|
关键词
|
析因数值实验法
;
蒸发皿蒸发
;
归因分析
;
偏导归因法
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院陆地水循环及地表过程重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100049
3.
河西学院祁连山生态研究院, 张掖, 734000
4.
中国科学院水资源中心, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地球物理学 |
基金
|
中国国家重点研究发展计划
;
中国科学院重点部署项目课题
;
中国科学院百人计划(孙福宝)
|
文献收藏号
|
CSCD:6364802
|
参考文献 共
31
共2页
|
1.
Brutsaert W. Hydrologic cycle explains the evaporation paradox.
Nature,1998,396(6706):30
|
CSCD被引
150
次
|
|
|
|
2.
Roderick M L. On the attribution of changing pan evaporation.
Geophysical Research Letters,2007,34(17):251-270
|
CSCD被引
79
次
|
|
|
|
3.
Peterson T. Evaporation losing its strength.
Nature,1995,377:687-688
|
CSCD被引
194
次
|
|
|
|
4.
刘昌明. 中国地表潜在蒸散发敏感性的时空变化特征分析.
地理学报,2011,66(5):579-588
|
CSCD被引
140
次
|
|
|
|
5.
Roderick M L. The cause of decreased pan evaporation over the past 50 years.
Science,2002,298(5597):1410-1411
|
CSCD被引
217
次
|
|
|
|
6.
Roderick M L. Changes in Australian pan evaporation from 1970 to 2002.
International Journal of Climatology,2004,24(9):1077-1090
|
CSCD被引
69
次
|
|
|
|
7.
Hobbins M T. Trends in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary?.
Geophysical Research Letters,2004,31(13):405-407
|
CSCD被引
29
次
|
|
|
|
8.
Roderick M L. Changes in New Zealand pan evaporation since the 1970s.
International Journal of Climatology,2005,25(15):2031-2039
|
CSCD被引
38
次
|
|
|
|
9.
Zhang Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau.
Journal of Geophysical Research: Atmospheres,2007,112(D12):1103-1118
|
CSCD被引
2
次
|
|
|
|
10.
刘敏. 近50年中国蒸发皿蒸发量变化趋势及原因.
地理学报,2009,64(3):259-269
|
CSCD被引
65
次
|
|
|
|
11.
Li Z. Analysis of changing pan evaporation in the arid region of Northwest China.
Water Resources Research,2013,49(4):2205-2212
|
CSCD被引
28
次
|
|
|
|
12.
Roderick M L. Pan evaporation trends and the terrestrial water balance. I. Principles and observations.
Geography Compass,2009,3(2):746-760
|
CSCD被引
8
次
|
|
|
|
13.
Roderick M L. Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation.
Geography Compass,2009,3(2):761-780
|
CSCD被引
13
次
|
|
|
|
14.
McVicar T R. Global review and synthesis of trends in observed terrestrial nearsurface wind speeds: Implications for evaporation.
Journal of Hydrology,2012,416:182-205
|
CSCD被引
79
次
|
|
|
|
15.
Wang T. Pan evaporation paradox and evaporative demand from the past to the future over China: A review.
Wiley Interdisciplinary ReviewsWater,2017,4(3):1-13
|
CSCD被引
1
次
|
|
|
|
16.
邱新法. 黄河流域近40年蒸发皿蒸发量的气候变化特征.
自然资源学报,2003,18(4):437-442
|
CSCD被引
133
次
|
|
|
|
17.
Dietrich W E. The search for a topographic signature of life.
Nature,2006,439(7075):411
|
CSCD被引
16
次
|
|
|
|
18.
Hobbins M. What drives the variability of evaporative demand across the conterminous United States?.
Journal of Hydrometeorology,2012,13(4):1195-1214
|
CSCD被引
5
次
|
|
|
|
19.
Hobbins M T. The variability of ASCE Standardized reference evapotranspiration: A rigorous, CONUS-wide decomposition and attribution.
American Society of Agricultural and Biological Engineers,2016,59(2):561-576
|
CSCD被引
1
次
|
|
|
|
20.
Wang J. Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Three-River Source Region, China.
Journal of Geophysical Research Atmospheres,2015,120:6391-6408
|
CSCD被引
5
次
|
|
|
|
|