帮助 关于我们

返回检索结果

PET/CT图像分割及其发展现状
Research on PET/CT Image Segmentation and Its Development

查看参考文献56篇

方玲玲 1   邱天爽 2   潘晓航 1   乔明泽 1  
文摘 随着精准医疗技术的快速进步,PET/CT图像中病灶区域分割已在医疗计划制定中显现出重要作用.PET/CT将PET(功能代谢显像)和CT(解剖结构显像)两种先进的影像技术有机地结合在一起,是影像诊断学的一个重要进展.结合当前分割方法,本文详细介绍了PET/CT成像原理以及PET/CT图像的特点,对分割方法进行分类,深入分析各种方法的现状及其在肿瘤学中的应用.最后,进一步阐述了PET/CT图像分割技术的核心问题和发展趋势.
其他语种文摘 With the rapid progress of precision medical technology,the segmentation of lesion regions in PET/CT images has played an important role in the development of medical plans.PET/CT combines two advanced imaging technologies organically:PET (functional metabolic imaging) and CT (anatomical structure imaging),which is an important progress in image diagnostics.Combined with the segmentation methods,this paper describes the characteristics of PET/CT images,the analysis of the current methods and the clinical application.Finally,the paper elaborates the development trend of PET/CT image segmentation technology.
来源 电子学报 ,2018,46(10):2504-2510 【核心库】
DOI 10.3969/j.issn.0372-2112.2018.10.026
关键词 精准医疗 ; PET/CT图像 ; 分割方法 ; 临床应用
地址

1. 辽宁师范大学计算机与信息技术学院, 辽宁, 大连, 116029  

2. 大连理工大学电子信息与电气工程学部, 辽宁, 大连, 116023

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 中国博士后科学基金 ;  国家自然科学基金
文献收藏号 CSCD:6364793

参考文献 共 56 共3页

1.  National Research Council (US) Committee on a framework for developing a new tax. Toward precision medicine:building a knowledge network for biomedical research and a new taxonomy of disease,2011 CSCD被引 5    
2.  Dhara A K. Computer-aided detection and analysis of pulmonary nodule from CT images:a survey. IETE Technical Review,2012,29(4):265-275 CSCD被引 3    
3.  Ballangan C. Automated delineation of lung tumors in PET images based on monotonicity and a tumor-customized criterion. IEEE Transactions on Information Technology in Biomedicine,2011,15(5):691-702 CSCD被引 1    
4.  Fried D. MO-DE-207B-10:Impact of morphologic characteristics on radiomics features from contast-enhanced CT for primary lung tumors. Medical Physics,2016,43(6):3706-3706 CSCD被引 1    
5.  Daouk J. Effect of tomographic operator inaccuracies and respiratory motion on PET/CT lung nodule images smearing. Nuclear Medicine Communications,2017,38(2):178-184 CSCD被引 1    
6.  Nermina B. Advantages of combined PET-CT in mediastinal staging in patients with non-small cell lung carcinoma. Acta Informatica Medica,2016,24(2):99-102 CSCD被引 2    
7.  Zheng X. A hybrid clustering method for ROI delineation in small animal dynamic PET images:application to the automatic estimation of FDG input functions. IEEE Engineering in Medicine & Biology Society,2011,15(2):195-205 CSCD被引 1    
8.  Zsoter N. PET-CT based automated lung nodule detection. IEEE Annual International Conference on Engineering in Medicine and Biology Society,2012:4974-4977 CSCD被引 1    
9.  Mharib A M. Survey on liver CT image segmentation methods. Artificial Intelligence Review,2012,37(2):83-95 CSCD被引 8    
10.  Sharifi M. Optimized production,quality control,biological evaluation and PET/CT imaging of 68Ga-PSMA-617 in breast adenocarcinoma model. Radio Chimica Acta,2017,105(5):399-407 CSCD被引 1    
11.  Karki K. TU-H-CAMPUS-JeP2-02:Interobserver variability of CT,PET-CT and MRI based primary tumor delineation for lung cancer. Medical Physics,2016,43(6):3782-3782 CSCD被引 1    
12.  Hines J P. Positive and negative predictive value of PET-CT in skull base lesions:case series and systematic literature review. J Neurol Surg Rep,2016,77(1):39-45 CSCD被引 1    
13.  Biehl K J. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer:is a single standardized uptake value threshold approach appropriate?. Journal of Nuclear Medicine,2006,47(11):1808-1812 CSCD被引 20    
14.  Belhassen S. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Medical Physics,2010,37(3):1309-1324 CSCD被引 1    
15.  Mu W. A segmentation algorithm for quantitative analysis of heterogeneous tumors of the cervix with 18F-FDG PET/CT. IEEE Transactions on Biomedical Engineering,2015,62(10):2465-2479 CSCD被引 2    
16.  Xu Z. Fuzzy connectedness image co-segmentation for hybrid PET/MRI and PET/CT scans. Computational Methods for Molecular Imaging,2015:15-24 CSCD被引 1    
17.  Han D. Globally optimal tumor segmentation in PET-CT images:a graph-based co-segmentation method. Information Processing in Medical Imaging,2011:245-256 CSCD被引 1    
18.  Guo Y. Automatic lung tumor segmentation on PET/CT images using fuzzy markov random field model. Computational and Mathematical Methods in Medicine,2014,1:171-188 CSCD被引 1    
19.  Hussein S. Automatic segmentation and quantification of white and brown adipose tissues from PET/CT scans. IEEE Transactions on Medical Imaging,2017,36(3):734-744 CSCD被引 2    
20.  Wanet M. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer:a comparison with threshold-based approaches,CT and surgical specimens. Journal of the European Society for Therapeutic Radiology & Oncology,2011,98(1):117-125 CSCD被引 4    
引证文献 1

1 蔡玉芳 基于自适应滤波系数的非局部均值计算机层析成像的图像降噪方法 光学学报,2020,40(7):0710001
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号