帮助 关于我们

返回检索结果

一种非特征的3D图像快速刚性配准方法
A Non-Feature Fast 3D Rigid-Body Image Registration Method

查看参考文献22篇

文摘 3D图像刚性配准旨在将一个图像映射到另一个具有相同场景的图像上,已经在医学诊断和其它领域中得到了广泛的应用.已有的方法大都基于特征点和针对特定的约束条件,带来了特征选择耗时多,随机性强,而且约束条件使用不灵活等问题.针对这些问题,提出直接使用图像灰度值的无特征3D刚性配准方法.该方法使用泰勒展开式和最小二乘法直接计算待配准图像的变换参数,并且使用较少的数据点完成快速的配准.实验结果表明,提出的算法获得较高的精度,并且使用少量的数据仍可以有效计算,这一特性使得它在大数据3D图像应用中更有吸引力.
其他语种文摘 3D image registration (IR) aims to map one image to another image of a same scene,widely used in medical diagnosis and other applications.The existing methods mostly use feature to registration and have specific constraint condition which have many problems such as time-consuming,strong random in feature extraction and not flexible under constraint condition.For those problems,an intensity-based method for non-feature 3D rigid IR is proposed in this paper.The method uses Taylor expansion and the least squares (LS) to directly get the transformation parameters and has advantage of high processing speed with less processed data.It is shown by numerous experiments that the proposed IR method has high accuracy and only uses very small proportion data to process.
来源 电子学报 ,2018,46(10):2384-2390 【核心库】
DOI 10.3969/j.issn.0372-2112.2018.10.011
关键词 3D图像配准 ; 图像变换 ; 泰勒展开式
地址

中国石油大学(华东)信息与控制工程学院, 山东, 青岛, 266580

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  国家自然科学基金 ;  中央高校基本科研业务费专项资金
文献收藏号 CSCD:6364778

参考文献 共 22 共2页

1.  Boltcheva D. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage,2009,46(3):786 CSCD被引 1    
2.  Song Huajun. Integrating Local Binary Patterns into Normalized Moment of Inertia for Updating Tracking Templates. Chinese Journal of Electronics,2016,25(4):706-710 CSCD被引 2    
3.  宋婉莹. 基于加权合成核与三重Markov场的极化SAR图像分类方法. 电子学报,2016,44(3):520-526 CSCD被引 6    
4.  Liu L. Fingerprint registration by maximization of mutual information. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society,2006,15(5):1100-1110 CSCD被引 2    
5.  Dufaux F. Efficient,robust,and fast global motion estimation for video coding. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society,2000,9(3):497-501 CSCD被引 37    
6.  杨媛. 一种改进的视频画质增强算法及VLSI设计. 电子学报,2012,40(8):1655-1658 CSCD被引 1    
7.  Davis M H. A physics-based coordinate transformation for 3-D image matching. IEEE Transactions on Medical Imaging,1997,16(3):317 CSCD被引 4    
8.  Qiu Peihua. Feature based image registration using non-degenerate pixels. Signal Processing,2013,93(4):706-720 CSCD被引 2    
9.  Saeed N. Magnetic resonance image segmentation using pattern recognition,and applied to image registration and quantitation. Nmr in Biomedicine,1998,11(4/5):157 CSCD被引 2    
10.  Denton E R. Comparison and evaluation of rigid,affine,and non-rigid registration of breast MR images. J Comput Assist Tomogr,1999,3661(5):800-805 CSCD被引 1    
11.  Avants B B. Symmetric diffeomorphic image registration:evaluating automated labeling of elderly and neurodegenerative cortex and frontal lobe. Proceedings of International Conference on Biomedical Image Registration,2006:50-57 CSCD被引 1    
12.  Qiu Peihua. On nonparametric image registration. Techno Metrics,2013,55(2):174-188 CSCD被引 1    
13.  Tustison N J. Directly manipulated free-form deformation image registration. IEEE Transactions on Image Processing,2009,18(3):624-635 CSCD被引 7    
14.  Xing Chen. Intensity-based image registration by nonparametric local smoothing. IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(10):2081-2092 CSCD被引 7    
15.  牛慧贤. 基于分数阶傅里叶变换的刚性图像配准技术,2015 CSCD被引 1    
16.  Khoo Y. Non-iterative rigid 2D/3D point-set registration using semidefinite programming. IEEE Transactions on Image Processing,2016,25(7):2956-2970 CSCD被引 2    
17.  So R W K. A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances. Pattern Recognition,2017,62(C):161-174 CSCD被引 2    
18.  Yang J. Go-ICP:Solving 3D registration efficiently and globally optimally. Proceedings of IEEE International Conference on Computer Vision,2013:1457-1464 CSCD被引 2    
19.  Eggert D W. Estimating 3-D rigid body transformations:a comparison of four major algorithms. Machine Vision and Applications,1997,9(5):272-290 CSCD被引 54    
20.  Wang Y. Image Processing and Jump Regression Analysis,2006 CSCD被引 1    
引证文献 3

1 莫晓盈 医学图像配准的深度学习方法综述 小型微型计算机系统,2021,42(8):1706-1714
CSCD被引 1

2 宋培娟 基于三维激光扫描的建筑模型可视化制作研究 激光与红外,2022,52(3):349-354
CSCD被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号