一种非特征的3D图像快速刚性配准方法
A Non-Feature Fast 3D Rigid-Body Image Registration Method
查看参考文献22篇
文摘
|
3D图像刚性配准旨在将一个图像映射到另一个具有相同场景的图像上,已经在医学诊断和其它领域中得到了广泛的应用.已有的方法大都基于特征点和针对特定的约束条件,带来了特征选择耗时多,随机性强,而且约束条件使用不灵活等问题.针对这些问题,提出直接使用图像灰度值的无特征3D刚性配准方法.该方法使用泰勒展开式和最小二乘法直接计算待配准图像的变换参数,并且使用较少的数据点完成快速的配准.实验结果表明,提出的算法获得较高的精度,并且使用少量的数据仍可以有效计算,这一特性使得它在大数据3D图像应用中更有吸引力. |
其他语种文摘
|
3D image registration (IR) aims to map one image to another image of a same scene,widely used in medical diagnosis and other applications.The existing methods mostly use feature to registration and have specific constraint condition which have many problems such as time-consuming,strong random in feature extraction and not flexible under constraint condition.For those problems,an intensity-based method for non-feature 3D rigid IR is proposed in this paper.The method uses Taylor expansion and the least squares (LS) to directly get the transformation parameters and has advantage of high processing speed with less processed data.It is shown by numerous experiments that the proposed IR method has high accuracy and only uses very small proportion data to process. |
来源
|
电子学报
,2018,46(10):2384-2390 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2018.10.011
|
关键词
|
3D图像配准
;
图像变换
;
泰勒展开式
|
地址
|
中国石油大学(华东)信息与控制工程学院, 山东, 青岛, 266580
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家自然科学基金
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:6364778
|
参考文献 共
22
共2页
|
1.
Boltcheva D. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage,2009,46(3):786
|
CSCD被引
1
次
|
|
|
|
2.
Song Huajun. Integrating Local Binary Patterns into Normalized Moment of Inertia for Updating Tracking Templates.
Chinese Journal of Electronics,2016,25(4):706-710
|
CSCD被引
2
次
|
|
|
|
3.
宋婉莹. 基于加权合成核与三重Markov场的极化SAR图像分类方法.
电子学报,2016,44(3):520-526
|
CSCD被引
6
次
|
|
|
|
4.
Liu L. Fingerprint registration by maximization of mutual information.
IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society,2006,15(5):1100-1110
|
CSCD被引
2
次
|
|
|
|
5.
Dufaux F. Efficient,robust,and fast global motion estimation for video coding.
IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society,2000,9(3):497-501
|
CSCD被引
37
次
|
|
|
|
6.
杨媛. 一种改进的视频画质增强算法及VLSI设计.
电子学报,2012,40(8):1655-1658
|
CSCD被引
1
次
|
|
|
|
7.
Davis M H. A physics-based coordinate transformation for 3-D image matching.
IEEE Transactions on Medical Imaging,1997,16(3):317
|
CSCD被引
4
次
|
|
|
|
8.
Qiu Peihua. Feature based image registration using non-degenerate pixels.
Signal Processing,2013,93(4):706-720
|
CSCD被引
2
次
|
|
|
|
9.
Saeed N. Magnetic resonance image segmentation using pattern recognition,and applied to image registration and quantitation.
Nmr in Biomedicine,1998,11(4/5):157
|
CSCD被引
2
次
|
|
|
|
10.
Denton E R. Comparison and evaluation of rigid,affine,and non-rigid registration of breast MR images.
J Comput Assist Tomogr,1999,3661(5):800-805
|
CSCD被引
1
次
|
|
|
|
11.
Avants B B. Symmetric diffeomorphic image registration:evaluating automated labeling of elderly and neurodegenerative cortex and frontal lobe.
Proceedings of International Conference on Biomedical Image Registration,2006:50-57
|
CSCD被引
1
次
|
|
|
|
12.
Qiu Peihua. On nonparametric image registration.
Techno Metrics,2013,55(2):174-188
|
CSCD被引
1
次
|
|
|
|
13.
Tustison N J. Directly manipulated free-form deformation image registration.
IEEE Transactions on Image Processing,2009,18(3):624-635
|
CSCD被引
7
次
|
|
|
|
14.
Xing Chen. Intensity-based image registration by nonparametric local smoothing.
IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(10):2081-2092
|
CSCD被引
7
次
|
|
|
|
15.
牛慧贤.
基于分数阶傅里叶变换的刚性图像配准技术,2015
|
CSCD被引
1
次
|
|
|
|
16.
Khoo Y. Non-iterative rigid 2D/3D point-set registration using semidefinite programming.
IEEE Transactions on Image Processing,2016,25(7):2956-2970
|
CSCD被引
2
次
|
|
|
|
17.
So R W K. A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances.
Pattern Recognition,2017,62(C):161-174
|
CSCD被引
2
次
|
|
|
|
18.
Yang J. Go-ICP:Solving 3D registration efficiently and globally optimally.
Proceedings of IEEE International Conference on Computer Vision,2013:1457-1464
|
CSCD被引
2
次
|
|
|
|
19.
Eggert D W. Estimating 3-D rigid body transformations:a comparison of four major algorithms.
Machine Vision and Applications,1997,9(5):272-290
|
CSCD被引
54
次
|
|
|
|
20.
Wang Y.
Image Processing and Jump Regression Analysis,2006
|
CSCD被引
1
次
|
|
|
|
|