紫外光强化铁离子循环活化PS氧化苯胺
Enhanced oxidation of aniline by persulfate via cycling of ferrous ions in the presence of UV irradiation
查看参考文献32篇
文摘
|
研究了草酸铁离子(Fe(C_2O_4)_3~(3-))在UV光照条件下的铁离子循环转化过程及其强化过硫酸钠(PS)活化氧化苯胺的机理,考察了Fe(C_2O_4)_3~(3-)浓度和初始pH对PS活化及苯胺氧化效果的影响.研究表明,在UV光照条件下,0.75 mmol·L~(-1)的Fe(C_2O_4)_3~(3-)溶液在初始pH值为3时,Fe~(2+)的转化率最高可达到96%,远高于柠檬酸铁铵和氯化铁体系,但反应过程中草酸根离子(C2O2- 4)会发生分解并引起pH升高,导致Fe~(2+)转化率急剧下降;Fe~(2+)循环转化过程对UV/Fe(C_2O_4)_3~(3-)体系强化PS活化的作用远大于UV光照直接活化PS过程,对PS活化分解率的贡献达到79%;初始Fe(C_2O_4)_3~(3-)浓度决定了Fe~(2+)循环转化的最大浓度并显著影响PS的活化效果,当Fe(C_2O_4)_3~(3-)初始浓度从0.25 mmol·L~(-1)逐渐提高到0.50、0.75、1.00 mmol·L~(-1)时,PS活化分解速率不断增大,但当浓度高于0.75 mmol·L~(-1)时,C2O2- 4对硫酸根自由基(SO_4·~-)的竞争作用显著增强,导致苯胺的氧化效果出现降低;中碱性条件不利于UV/Fe(C_2O_4)_3~(3-)体系发生光化学反应生成Fe~(2+),但在其活化PS过程中,由于PS分解引起pH下降,在初始pH为7和9时PS仍可被有效活化,PS分解率可分别达到86%和68%. |
其他语种文摘
|
The mechanisms of ferrous ion cycling and its performance in promoting the oxidative degradation of aniline by sodium persulfate (PS)in the presence of UV irradiation and ferric oxalate(Fe(C_2O_4)_3~(3-))were studied.The effects of initial Fe(C_2O_4)_3~(3-) concentration and pH on PS activation and degradation of aniline were also investigated.It was indicated that the conversion efficiency of Fe~(2+) was as high as 96% in the solution with initial pH of 3 and Fe(C_2O_4)_3~(3-) concentration of 0.75 mmol·L~(-1) under UV irradiation,which was much higher than those of ammonium ferric citrate and ferric chloride solution under identical conditions.However,the decomposition of oxalate ion and the induced pH increase led to the sharp decrease of Fe~(2+) conversion efficiency.The process of Fe~(2+) conversion played a much more significant role on promoting the PS activation than direct activation process via UV irradiation in UV/Fe(C_2O_4)_3~(3-) systems,contributing up to 79% of the PS activation.The initial Fe(C_2O_4)_3~(3-) concentration determined the maximum concentrations of generated Fe~(2+) and affected the PS activation significantly.When the concentration increased from 0.25 mmol·L~(-1) to 0.50,0.75 and 1.00 mmol·L~(-1),the efficiency of PS activation increased accordingly.But when the ferric oxalate concentration was higher than 0.75 mmol·L~(-1),the enhanced competition of C2O2- 4 for sulfate radicals led to a lower oxidation efficiency of aniline.Neutral and alkaline environments were not conducive to the Fe~(2+) generation via photochemical reaction in the UV/Fe(C_2O_4)_3~(3-) systems.However,PS activation efficiency could reach as high as 86% and 68% at pH 7 and pH 9,respectively,which was due to the induced pH decline along with the PS decomposition. |
来源
|
环境化学
,2018,37(10):2247-2256 【核心库】
|
DOI
|
10.7524/j.issn.0254-6108.2018030301
|
关键词
|
紫外光
;
草酸铁
;
铁循环
;
过硫酸盐
;
氧化
|
地址
|
1.
环境保护部华南环境科学研究所, 广州, 510655
2.
中国科学院广州地球化学研究所, 广州, 510640
3.
广东省水与大气污染防治重点实验室, 广东省水与大气污染防治重点实验室, 广州, 510655
4.
中国科学院大学, 北京, 100049
5.
华南师范大学环境研究院, 广州, 510006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6108 |
学科
|
环境污染及其防治 |
基金
|
广东省自然科学基金
;
中央级公益性科研院所基本科研业务费专项资金
|
文献收藏号
|
CSCD:6354915
|
参考文献 共
32
共2页
|
1.
Medina R. Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation.
Science of the Total Environment,2018,618:518-530
|
CSCD被引
13
次
|
|
|
|
2.
Devi P. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems.
Science of the Total Environment,2016,571:643-657
|
CSCD被引
33
次
|
|
|
|
3.
Liang C J. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple.
Chemosphere,2004,55(9):1213-1223
|
CSCD被引
58
次
|
|
|
|
4.
Huang K C. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE).
Chemosphere,2002,49(4):413-420
|
CSCD被引
76
次
|
|
|
|
5.
Yang S. Degradation efficiencies of azo dye acid orange 7 by the interaction of heat,UV and anions with common oxidants: Persulfate,peroxymonosulfate and hydrogen peroxide.
Journal of Hazardous Materials,2010,179(1/3):552-558
|
CSCD被引
53
次
|
|
|
|
6.
Furman O S. Mechanism of base activation of persulfate.
Environmental Science & Technology,2010,44(16):6423-6428
|
CSCD被引
122
次
|
|
|
|
7.
Tan C Q. Degradation of diuron by persulfate activated with ferrous ion.
Separation and Purification Technology,2012,95:44-48
|
CSCD被引
8
次
|
|
|
|
8.
Jiang X X. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion.
Environmental Science and Pollution Research,2013,20(7):4947-4953
|
CSCD被引
10
次
|
|
|
|
9.
Zhu L L. Core-shell Fe-Fe_2O_3 nanostructures as effective persulfate activator for degradation of methyl orange.
Separation and Purification Technology,2013,108:159-165
|
CSCD被引
10
次
|
|
|
|
10.
Oh S Y. Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides.
Chemical Engineering Journal,2011,172(2/3):641-646
|
CSCD被引
26
次
|
|
|
|
11.
Oh S Y. Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron.
Science of the Total Environment,2010,408(16):3464-3468
|
CSCD被引
30
次
|
|
|
|
12.
Pu M. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution.
Applied Catalysis A: General,2018,549:82-92
|
CSCD被引
3
次
|
|
|
|
13.
张金凤. 水体系中Fe(Ⅱ)/K2S2O8降解敌草隆的研究.
环境化学,2008,27(1):15-18
|
CSCD被引
14
次
|
|
|
|
14.
Zou J. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe (III)/Fe(II) Cycle with hydroxylamine.
Environmental Science & Technology,2013,47(20):11685-11691
|
CSCD被引
70
次
|
|
|
|
15.
Zhang H. Removal of COD from landfill leachate by an electro/Fe~(2+)/peroxydisulfate process.
Chemical Engineering Journal,2014,250:76-82
|
CSCD被引
8
次
|
|
|
|
16.
Kwan C. The role of organic ligands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid.
Chemosphere,2007,67(8):1601-1611
|
CSCD被引
4
次
|
|
|
|
17.
Liang C J. A rapid spectrophotometric determination of persulfate anion in ISCO.
Chemosphere,2008,73(9):1540-1543
|
CSCD被引
53
次
|
|
|
|
18.
Tamura H. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III).
Talanta,1974,21(4):314-318
|
CSCD被引
53
次
|
|
|
|
19.
Zhou T. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands.
Water Research,2011,45(9):2915-2924
|
CSCD被引
6
次
|
|
|
|
20.
Zhao D. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil.
Journal of Hazardous Materials,2013,254:228-235
|
CSCD被引
44
次
|
|
|
|
|