Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu—Part I: Field measurement
查看参考文献44篇
Li Deshun
1,2,3
Guo Tao
1
Li Yinran
1,2,3
Hu Jinsen
1
Zheng Zhi
1,2,3
Li Ye
4,5,6
*
Di Yujia
4
Hu Wenrui
7
*
Li Rennian
1,2,3
*
文摘
|
Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine (33 kW) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation (LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy (TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of -1, and those of lateral and axial velocity fluctuations show slopes of -1 and -5/3, respectively. However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and 7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid. |
来源
|
Science China. Physics
, Mechanics & Astronomy,2018,61(9):094711-1-094711-14 【核心库】
|
DOI
|
10.1007/s11433-018-9219-y
|
关键词
|
wind power
;
atmospheric turbulence effects
;
velocity measurements
;
turbulent wakes
;
large-eddy simulations
|
地址
|
1.
School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050
2.
Gansu Provincial Technology Centre for Wind Turbines, Lanzhou, 730050
3.
Gansu Key Laboratory of Fluid Machinery and Systems, Gansu Key Laboratory of Fluid Machinery and Systems, Lanzhou, 730050
4.
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240
5.
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, State Key Laboratory of Ocean Engineering, Shanghai, 200240
6.
Shanghai Jiao Tong University, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240
7.
Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1674-7348 |
基金
|
国家973计划
;
国家自然科学基金
;
中组部千人计划
;
the Platform Construction of Ocean Energy Comprehensive Supporting Service (2014)
;
the High-tech Ship Research Projects Sponsored by MIITC Floating Support Platform Project
;
State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University
|
文献收藏号
|
CSCD:6343214
|
参考文献 共
44
共3页
|
1.
Vermeer L J.
Prog. Aerospace Sci,2003,39:467
|
CSCD被引
72
次
|
|
|
|
2.
Crespo A.
Wind Energy,2015,18:1
|
CSCD被引
1
次
|
|
|
|
3.
Snel H.
Wind Energy,1998,1:46
|
CSCD被引
10
次
|
|
|
|
4.
Zhao Q.
Chin. J. Aeronaut,2018,31:214
|
CSCD被引
2
次
|
|
|
|
5.
Hansen M O L.
Prog. Aerospace Sci,2006,42:285
|
CSCD被引
67
次
|
|
|
|
6.
Okulov V L.
Prog. Aerospace Sci,2015,73:19
|
CSCD被引
2
次
|
|
|
|
7.
Sanderse B.
Wind Energy,2011,14:799
|
CSCD被引
41
次
|
|
|
|
8.
Mo J O.
J. Wind Eng. Ind. Aerodyn,2013,117:38
|
CSCD被引
5
次
|
|
|
|
9.
Mo J O.
J. Wind Eng. Ind. Aerodyn,2013,112:11
|
CSCD被引
17
次
|
|
|
|
10.
Ashton R.
J. Phys.-Conf. Ser,2015,625:012033
|
CSCD被引
2
次
|
|
|
|
11.
Vermeer N J.
How Fast is a Tip Vortex? Technical Report,1995
|
CSCD被引
1
次
|
|
|
|
12.
Grant I.
Exp. Fluids,1997,23:513
|
CSCD被引
6
次
|
|
|
|
13.
Grant I.
J. Wind Eng. Ind. Aerodyn,2000,85:177
|
CSCD被引
9
次
|
|
|
|
14.
Grant I.
Exp. Fluid,2000,28:368
|
CSCD被引
5
次
|
|
|
|
15.
Haans W.
J. Sol. Energy Eng,2005,127:456
|
CSCD被引
10
次
|
|
|
|
16.
Haans W.
31st European Rotorcraft Forum,2005:61.1-61.14
|
CSCD被引
1
次
|
|
|
|
17.
Haans W.
J. Sol. Energy Eng,2006,128:472
|
CSCD被引
2
次
|
|
|
|
18.
Haans W.
Wind Energy,2008,11:245
|
CSCD被引
6
次
|
|
|
|
19.
Medici D.
Wind Energy,2006,9:219
|
CSCD被引
11
次
|
|
|
|
20.
Medici D.
Wind Energy,2008,11:211
|
CSCD被引
4
次
|
|
|
|
|