基于爬坡算法的片上低栅瓣二维光学相控阵
Low Side Lobe On-chip Two Dimensional Optical Phased Array Based on the Hill Climbing Algorithm
查看参考文献23篇
杜书剑
1,2,3
章羚璇
1,2,3
王国玺
1,2,3
李中宇
1,2,3
张其浩
1,2,3
谢鹏
1,2,3
李燕
1
米磊
1
孙笑晨
1,2
张文富
1,2,3
*
文摘
|
通过两级定向耦合器结构实现了光学相控阵天线阵列的二维排布,并设计了特殊C形弯曲波导进行热调作为阵元的相位控制器.提出一种针对阵元数量不高的稀布片上光学相控阵远场高阶干涉栅瓣的压缩方法.将均匀的阵元间距通过爬坡算法优化成非均匀间距,以破坏栅瓣产生所需的干涉相长条件,实现对栅瓣的压缩作用.在1 310nm波长,通过时域有限差分法对基于微型光栅耦合器天线的稀布阵列进行计算分析,结果表明优化的阵元间距能实现-6~-7dB的栅瓣抑制比. |
其他语种文摘
|
A two-stage directional coupler structure is proposed to realize the two dimensional optical phased array,and a distinctive C-bend waveguide is designed for thermal regulation as optical phase shifter of array element.A method that compresses far field side lobes caused by high-order interference for sparse on-chip optical phased arrays is presented.Hill climbing algorithm is adopted to optimize the uniform antenna spacing and make it become non-uniform,which will greatly mitigate constructive interference conditions and then compress far field side lobes.Using finite-difference time-domain method to simulate the sparse optical grating coupler array designed at 1 310nm wavelength showing that this optimization can realize a-6~-7dB ratio of side lobe and main lobe. |
来源
|
光子学报
,2018,47(9):0913001-1-0913001-9 【核心库】
|
DOI
|
10.3788/gzxb20184709.0913001
|
关键词
|
硅光子学
;
相控阵
;
爬坡算法
;
光栅
;
栅瓣
;
干涉
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
西安光学精密机械研究所中英微纳光子学联合研究中心, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:6334999
|
参考文献 共
23
共2页
|
1.
Guan B. Free-space coherent optical communication with orbital angular,momentum multiplexing/demultiplexing using a hybrid 3Dphotonic integrated circuit.
Optics Express,2014,22(1):145-156
|
CSCD被引
13
次
|
|
|
|
2.
Kwong D. On-chip silicon optical phased array for two-dimensional beam steering.
Optics Letters,2014,39(4):941-944
|
CSCD被引
20
次
|
|
|
|
3.
Sun J. Large-scale nanophotonic phased array.
Nature,2013,493:195-199
|
CSCD被引
78
次
|
|
|
|
4.
Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal.
Applied Optics,1972,11(3):613-616
|
CSCD被引
31
次
|
|
|
|
5.
Resler D P. High-efficiency liquid-crystal optical phased-array beam steering.
Optics Letters,1996,21(9):689-691
|
CSCD被引
18
次
|
|
|
|
6.
Huang W R. High speed,high power one-dimensional beam steering from a 6-element optical phased array.
Optics Express,2012,20(16):17311-17318
|
CSCD被引
9
次
|
|
|
|
7.
Carlson N W. Electronic beam steering in monolithic grating-surfaceemitting diode laser arrays.
Applied Physics Letters,1988,53(23):2275-2277
|
CSCD被引
1
次
|
|
|
|
8.
Jarrahi M. Optical switching based on high-speed phased array optical beam steering.
Applied Physics Letters,2008,92(1):014106
|
CSCD被引
2
次
|
|
|
|
9.
Chan T K. Optical beamsteering using an 8×8MEMS phased array with closedloop interferometric phase control.
Optics Express,2013,21(3):2807-2815
|
CSCD被引
3
次
|
|
|
|
10.
Yoo B W. A 32×32optical phased array using polysilicon sub-wavelength highcontrast-grating mirrors.
Optics Express,2014,22(16):19029-19039
|
CSCD被引
8
次
|
|
|
|
11.
Yoo B W. Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering.
Optics Express,2013,21(10):12238-12248
|
CSCD被引
10
次
|
|
|
|
12.
Acoleyen K V. Two-dimensional optical phased array antenna on silicon-on-insulator.
Optics Express,2010,18(13):13655-13660
|
CSCD被引
17
次
|
|
|
|
13.
Kwong D. 1×12Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane.
Applied Physics Letters,2011,99(5):051104
|
CSCD被引
14
次
|
|
|
|
14.
Doylend J K. Two-dimensional free-space beam steering withan optical phased array on silicon-on-insulator.
Optics Express,2011,19(22):21595-21604
|
CSCD被引
23
次
|
|
|
|
15.
Hutchison D N. High-resolution aliasing-free optical beam steering.
Optica,2016,3(8):887-890
|
CSCD被引
38
次
|
|
|
|
16.
黑徐伟. 基于导模共振的窄带可调谐滤波器.
光子学报,2017,46(12):1223001
|
CSCD被引
3
次
|
|
|
|
17.
Yaacobi A. Vertical emitting aperture nanoantennas.
Optics Letters,2012,37(9):1454-1456
|
CSCD被引
1
次
|
|
|
|
18.
Notaros J. Finite-difference complex-wavevector band structure solver for analysis and design of periodic radiative microphotonic structures.
Optics Letters,2015,40(6):1053-1056
|
CSCD被引
1
次
|
|
|
|
19.
Sun J. Large-scale silicon photonic circuits for optical phased arrays.
IEEE Journal of Selected Topics In Quantum Electronics,2014,20(4):8201115
|
CSCD被引
8
次
|
|
|
|
20.
Roelkens G. High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay.
Optics Express,2006,14(24):11622-11630
|
CSCD被引
13
次
|
|
|
|
|