排-留烃过程对富有机质页岩纳米孔隙发育影响的热模拟实验研究
Influence of hydrocarbon expulsion and retention on the evolution of nanometerscale pores in organic matter rich shale: An example from pyrolysis experiment
查看参考文献42篇
文摘
|
为研究生-排烃过程对页岩纳米孔隙演化的影响,选择低成熟且生烃潜力差异显著的茂名油页岩和大隆组硅质页岩为研究对象,经低温热模拟和索氏抽提增加了页岩在生油高峰期的排烃效率后,通过高温热模拟实验,使具有不同残留烃含量的样品演化到过成熟阶段。通过热模拟产物的地球化学分析和孔隙测量,获得了不同残留烃含量的页岩有机质与孔隙发育的热演化规律。结果表明,在高成熟阶段,富I型有机质的黏土质茂名油页岩的残留烃大量转化为固体沥青,促进了中孔、大孔的发育,对微孔的发育影响较小;具Ⅱ型有机质的大隆组硅质页岩,高成熟阶段残留于页岩中的极性有机组分与干酪根生成新的固体有机质,其纳米孔隙发育较差,导致残留烃对中孔和大孔的发育影响不明显。 |
其他语种文摘
|
To study the influence of hydrocarbon expulsion and retention on the evolution of nanometer-scale pores in shales, two immature shales (Maoming oil shale and Dalong siliceous shale) with different kerogen types were heated at low temperatures to the oil-window, and hydrocarbon expulsion efficiency was enhanced by Soxhlet extraction. Then, samples with different contents of residual hydrocarbon were isothermally pyrolyzed to over mature stages. After investigating geochemical characteristics and porosities of the heated samples, distinct pore structure developments were found in samples with different contents of residual hydrocarbon. Our results suggest that for the shale with type Ⅰ kerogen and abundant clay minerals at high maturities, residual hydrocarbons are converted to solid bitumen and this facilitates the development of mesopores and marcopores; however, micropore evolution is only slightly influenced. For the shale with type Ⅱ kerogen and siliceous minerals, residual hydrocarbons and kerogen coevolve to a new kind of organic solids which generates a small number of pores and their influence on pore evolution is slight. |
来源
|
地球化学
,2018,47(5):575-585 【核心库】
|
DOI
|
10.19700/j.0379-1726.2018.05.00
|
关键词
|
排-留烃
;
页岩
;
纳米孔隙
;
热模拟
|
地址
|
1.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
中国科学院战略性先导科技专项
;
中国科学院广州地球化学研究所“一三五”项目
|
文献收藏号
|
CSCD:6333167
|
参考文献 共
42
共3页
|
1.
Jarvie D M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment.
AAPG Bull,2007,91(4):475-499
|
CSCD被引
923
次
|
|
|
|
2.
邹才能. 中国页岩气形成机理,地质特征及资源潜力.
石油勘探与开发,2010,37(6):641-653
|
CSCD被引
756
次
|
|
|
|
3.
贾承造. 中国非常规油气资源与勘探开发前景.
石油勘探与开发,2012,39(2):129-136
|
CSCD被引
653
次
|
|
|
|
4.
肖贤明. 北美页岩气研究及对我国下古生界页岩气开发的启示.
煤炭学报,2013,38(5):721-727
|
CSCD被引
52
次
|
|
|
|
5.
Fang H. Mechanisms of shale gas storage: Implications for shale gas exploration in China.
AAPG Bull,2013,97(8):1325-1346
|
CSCD被引
157
次
|
|
|
|
6.
Loucks R G. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale.
J Sediment Res,2009,79(12):848-861
|
CSCD被引
730
次
|
|
|
|
7.
Mastalerz M. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion.
AAPG Bull,2013,97(10):1621-1643
|
CSCD被引
181
次
|
|
|
|
8.
Klaver J. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales.
Mar Pet Geol,2015,59:451-466
|
CSCD被引
41
次
|
|
|
|
9.
Milliken K L. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania.
AAPG Bull,2013,97(2):177-200
|
CSCD被引
241
次
|
|
|
|
10.
Curtis M E. Development of organic porosity in the Woodford Shale with increasing thermal maturity.
Int J Coal Geol,2012,103:26-31
|
CSCD被引
248
次
|
|
|
|
11.
郭秋麟. 泥页岩埋藏过程孔隙度演化与预测模型探讨.
天然气地球科学,2013,24(3):439-449
|
CSCD被引
40
次
|
|
|
|
12.
Pommer M. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas.
AAPG Bull,2015,99(9):1713-1744
|
CSCD被引
61
次
|
|
|
|
13.
吉利明. 黏土矿物甲烷吸附性能与微孔隙体积关系.
天然气地球科学,2014,25(2):141-152
|
CSCD被引
31
次
|
|
|
|
14.
Chen J. Evolution of nanoporosity in organic-rich shales during thermal maturation.
Fuel,2014,129:173-181
|
CSCD被引
87
次
|
|
|
|
15.
Ko L T. Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments.
AAPG Bull,2016,100(11):1693-1722
|
CSCD被引
53
次
|
|
|
|
16.
吉利明. 富有机质泥页岩高压生烃模拟与孔隙演化特征.
石油学报,2016,37(2):172-181
|
CSCD被引
40
次
|
|
|
|
17.
Hu H Y. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis.
Mar Pet Geol,2015,59:114-128
|
CSCD被引
36
次
|
|
|
|
18.
Sun L N. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis.
Fuel,2015,158:549-557
|
CSCD被引
37
次
|
|
|
|
19.
Tang X. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin.
Mar Pet Geol,2015,64:165-172
|
CSCD被引
17
次
|
|
|
|
20.
崔景伟. 页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据.
地质学报,2013,87(5):730-736
|
CSCD被引
32
次
|
|
|
|
|