帮助 关于我们

返回检索结果

Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth

查看参考文献36篇

Suo Yongqiang 1,2   Tao Jin 3   Zhang Wei 1 *  
文摘 Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.
来源 Frontiers of Mathematics in China ,2018,13(4):913-933 【核心库】
DOI 10.1007/s11464-018-0710-3
关键词 Stochastic differential delay equation (SDDE) ; polynomial growth ; central limit theorem ; moderate deviation principle ; weak convergence
地址

1. School of Mathematics and Statistics, Central South University, Changsha, 410083  

2. Department of Mathematics, Swansea University, UK, Singleton Park, SA2 8PP  

3. Department of Mathematics, Southern University of Science and Technology, Shenzhen, 518055

语种 英文
文献类型 研究性论文
ISSN 1673-3452
学科 数学
基金 国家自然科学基金 ;  湖南省自然科学基金 ;  the Mathematics and Interdisciplinary Sciences Project of Central South University
文献收藏号 CSCD:6326041

参考文献 共 36 共2页

1.  Bao J. Ergodicity for neutral type SDEs with infinite memory. arXiv: 1805.03431 CSCD被引 1    
2.  Bao J. Convergence rate of EM scheme for SDDEs. Proc Amer Math Soc,2013,141(9):3231-3243 CSCD被引 2    
3.  Bao J. Large deviations for neutral functional SDEs with jumps. Stochastics,2015,87(1):48-70 CSCD被引 5    
4.  Budhiraja A. Large deviations for stochastic partial di erential equations driven by Poisson random measure. Stochastic Process Appl,2013,123(2):523-560 CSCD被引 8    
5.  Budhiraja A. A variational representation for positive functionals of infinite dimensional Brownian motion. Probab Math Statist,2000,20(1):39-61 CSCD被引 12    
6.  Budhiraja A. Large deviation properties of weakly interacting processes via weak convergence methods. Ann Probab,2012,40(1):74-102 CSCD被引 2    
7.  Budhiraja A. Moderate deviation principles for stochastic di erential equations with jumps. Ann Probab,2016,44(3):1723-1775 CSCD被引 6    
8.  Budhiraja A. Large deviations for infinite dimensional stochastic dynamical systems. Ann Probab,2008,36(4):1390-1420 CSCD被引 12    
9.  Budhiraja A. Variational representations for continuous time processes. Ann Inst Henri Poincare Probab Stat,2011,47(3):725-747 CSCD被引 6    
10.  Budhiraja A. Large deviations for multidimensional state-dependent shotnoise processes. J Appl Probab,2015,52(4):1097-1114 CSCD被引 1    
11.  Cardon-Webber C. Large deviations for Burger's-type SPDE. Stochastic Process Appl,1999,84(1):53-70 CSCD被引 3    
12.  Cerrai S. Large deviations for stochastic reaction di usion systems with multiplicative noise and non-Lipschitz reaction term. Ann Probab,2004,32(18):1100-1139 CSCD被引 5    
13.  Chow P. Large deviation problem for some parabolic Ito equations. Comm Pure Appl Math,1992,45(1):97-120 CSCD被引 3    
14.  Cortissoz J. On the Skorokhod representation theorem. Proc Amer Math Soc,2007,135(12):3995-4007 CSCD被引 1    
15.  Dembo A. Large Deviations Techniques and Applications. 2nd ed. Applications of Mathematics, Vol 38,1998 CSCD被引 2    
16.  Duan J. Large deviations for the Boussinesq equations under random in uences. Stochastic Process Appl,2009,119(6):2052-2081 CSCD被引 5    
17.  Dupuis P. A Weak Convergence Approach to the Theory of Large Deviations,1997 CSCD被引 12    
18.  Fatheddin P. Central limit theorem for a class of SPDEs. J Appl Probab,2015,52(3):786-796 CSCD被引 1    
19.  Freidlin M. Random perturbations of reaction-di usion equations: the quasideterministic approximation. Trans Amer Math Soc,1988,305(2):665-697 CSCD被引 4    
20.  Freidlin M. Random Perturbation of Dynamical Systems. Grundlehren Math Wiss, Vol 260,1984 CSCD被引 1    
引证文献 1

1 Ma Xiaocui Moderate deviations for neutral functional stochastic differential equations driven by Levy noises Frontiers of Mathematics in China,2020,15(3):529-554
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号