Highly [010]-oriented self-assembled LiCoPO_4/C nanoflakes as high-performance cathode for lithium ion batteries
查看参考文献45篇
文摘
|
In this article, highly [010]-oriented self-assembled LiCoPO_4/C nanoflakes were prepared through simple and facile solution-phase strategies at low temperature and ambient pressure. The formation of 5-hydroxylmethylfurfural and levoglucosan via the dehydration of glucose during the reaction played a key role in mediating the morphology and structure of the resulting products. LiCoPO_4 highly oriented along the (010)-facets exposed Li+ ion transport channels, facilitating ultrafast lithium ion transportation. In turn, the unique assembled mesoporous structure and the flake-like morphology of the prepared products benefit lithium ion batteries constructed using two-dimensional (2D) LiCoPO_4/C nanoflakes self-assembles as cathodes and commercial Li_4Ti_5O_(12) as anodes. The tested batteries provide high capacities of 154.6 mA·h·g~(-1) at 0.1 C (based on the LiCoPO_4 weight of 1 C = 167 mA·h·g~(-1)) and stable cycling with 93.1% capacity retention after 100 cycles, which is outstanding compared to other recently developed LiCoPO_4 cathodes. |
来源
|
Nano Research
,2018,11(5):2424-2435 【核心库】
|
DOI
|
10.1007/s12274-017-1864-0
|
关键词
|
lithium ion battery
;
lithium cobalt phosphate
;
two-dimensional (2D) nanoflakes
;
(010) oriented assembly
;
solution-phase synthesis
|
地址
|
1.
School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinxiang, 453007
2.
National Institute for Materials Science (NIMS), Japan, Ibaraki, 305-0044
3.
Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1998-0124 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
the Natural Science Foundation of Shenzhen
;
the Shenzhen Key Laboratory Project
|
文献收藏号
|
CSCD:6315614
|
参考文献 共
45
共3页
|
1.
Goodenough J B. The Li-ion rechargeable battery: A perspective.
J. Am. Chem. Soc,2013,135:1167-1176
|
CSCD被引
570
次
|
|
|
|
2.
Goodenough J B. Challenges for rechargeable Li batteries.
Chem. Mater,2010,22:587-603
|
CSCD被引
660
次
|
|
|
|
3.
Tarascon J M. Issues and challenges facing rechargeable lithium batteries.
Nature,2001,414:359-367
|
CSCD被引
1253
次
|
|
|
|
4.
Armand M. Building better batteries.
Nature,2008,451:652-657
|
CSCD被引
1179
次
|
|
|
|
5.
Li W D. High-voltage positive electrode materials for lithium-ion batteries.
Chem. Soc. Rev,2017,46:3006-3059
|
CSCD被引
93
次
|
|
|
|
6.
He X. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method.
Nano Res,2014,7:110-118
|
CSCD被引
10
次
|
|
|
|
7.
Lee M J. Simultaneous surface modification method for 0.4Li_2MnO_3-0.6LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material for lithium ion batteries: Acid treatment and LiCoPO_4 coating.
Nano Res,2017,10:4210-4220
|
CSCD被引
6
次
|
|
|
|
8.
Krederlll K J. Vanadium-substituted LiCoPO_4 core with a monolithic LiFePO_4 shell for high-voltage lithium-ion batteries.
ACS Energy Lett,2017,2:64-69
|
CSCD被引
2
次
|
|
|
|
9.
Zhou A J. Enhanced interfacial kinetics and high-voltage/high-rate performance of LiCoO_2 cathode by controlled sputter-coating with a nanoscale Li_4Ti_5O_(12) ionic conductor.
ACS Appl. Mater. Interfaces,2016,8:34123-34131
|
CSCD被引
3
次
|
|
|
|
10.
Hao J M. Synthesis and electrochemical performance of Sn-doped LiNi_(0.5)Mn_(1.5)O_4 cathode material for high-voltage lithium-ion batteries.
Sci. China Mater,2017,60:315-323
|
CSCD被引
6
次
|
|
|
|
11.
Ludwig J. Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO_4 as a high-voltage cathode material for Li-ion batteries.
J. Power Sources,2017,342:214-223
|
CSCD被引
3
次
|
|
|
|
12.
Boulineau A. Revealing electrochemically induced antisite defects in LiCoPO_4: Evolution upon cycling.
Chem. Mater,2015,27:802-807
|
CSCD被引
2
次
|
|
|
|
13.
Fang L. Design and synthesis of two-dimensional porous Fe-doped LiCoPO_4 nano-plates as improved cathode for lithium ion batteries.
J. Power Sources,2016,312:101-108
|
CSCD被引
2
次
|
|
|
|
14.
Bramnik N N. Electrochemical and structural study of LiCoPO_4-based electrodes.
J. Solid State Electr,2004,8:558-564
|
CSCD被引
8
次
|
|
|
|
15.
Ornek A. An impressive approach to solving the ongoing stability problems of LiCoPO_4 cathode: Nickel oxide surface modification with excellent core-shell principle.
J. Power Sources,2017,356:1-11
|
CSCD被引
2
次
|
|
|
|
16.
Kosova N V. Effect of Fe~(2+) substitution on the structure and electrochemistry of LiCoPO_4 prepared by mechanochemically assisted carbothermal reduction.
J. Mater. Chem. A,2014,2:20697-20705
|
CSCD被引
3
次
|
|
|
|
17.
West W C. Radio frequency magnetron-sputtered LiCoPO_4 cathodes for 4.8 V thin-film batteries.
J. Electrochem. Soc,2003,150:A1660-A1666
|
CSCD被引
7
次
|
|
|
|
18.
Lloris J M. Improvement of the electrochemical performance of LiCoPO_4 5 V material using a novel synthesis procedure.
Electrochem. Solid-State Lett,2002,5:A234-A237
|
CSCD被引
5
次
|
|
|
|
19.
Lee H. Olivine LiCoPO_4 phase grown LiCoO_2 cathode material for high density Li batteries.
Electrochem. Commun,2007,9:149-154
|
CSCD被引
5
次
|
|
|
|
20.
Liu J. Spherical nanoporous LiCoPO_4/C composites as high performance cathode materials for rechargeable lithium-ion batteries.
J. Mater. Chem,2011,21:9984-9987
|
CSCD被引
6
次
|
|
|
|
|