基于热红外的四种土壤含水量估算方法对比
Estimation of surface soil moisture based on thermal remote sensing: Intercomparison of four methods
查看参考文献43篇
文摘
|
基于遥感的区域土壤水分反演是流域水资源规划管理、农作物灌溉制度制定、区域旱情监测、农作物估产等方面的基础.本文对四种可见光/热红外土壤水分反演方法进行评估对比,这四种土壤水分估算方法包括基于温度植被干旱指数( TVDI)的土壤水分估算方法和三种基于蒸散比/潜在蒸散比的土壤水分估算方法( EFM1,EFM2和EFM3) .基于以上四种土壤水分估算方法,本文使用ASTER数据估算了黑河流域中游地区的土壤水分状况,使用研究区内生态水文无线传感器网络和流域水文气象观测站点的土壤水分观测对四个模型进行了验证评估.结果表明,TVDI方法因其干、湿边确定的经验性,会导致土壤水分估算的误差.而基于蒸散比/潜在蒸散比的土壤水分估算方法会在一定程度改善TVDI方法估算的经验性.通过蒸散比/潜在蒸散比的三种方法对比显示基于EFM1和EFM3方法优于EFM2方法.此外,基于热红外的土壤水分估算方法都需要土壤参数信息,土壤参数的不确定性会导致土壤水分估算的误差,高精度的土壤参数会改善基于热红外的土壤水分估算方法的精度. |
其他语种文摘
|
Remote sensing-based estimation of soil moisture is crucial in many aspects including basinscale water resource management,irrigation scheduling,regional scale drought monitoring and crop yield forecasting. In this study,we evaluate the potential of visible /thermal-infrared remote sensing in soil moisture estimation,by assessing the TVDI-based method and three categories of methods based on evaporative fraction /potential evaporation ratio ( EFM1,EFM2 and EFM3) . In combination with ASTER data set,soil moisture in middle reach of the Heihe River Basin is predicted by the above-mentioned four methods and validated by the ground-based measurements from eco-hydrological wireless sensor network and hydro meteorological observation network in the middle reach of Heihe river basin. Results indicate that uncertainties arise from the empiricism of the TVDI-based method in the process of determining dry and wet edges. On the other hand,the evaporation fraction /potential evaporation ratio methods can to some degree reduce the uncertainties,and among the three methods,EFM1 and EFM3 outperform EFM2. In addition,the thermal-infrared based methods require accurate soil parameters to reproduce the variation of soil moisture. |
来源
|
红外与毫米波学报
,2018,37(4):459-467,476 【核心库】
|
DOI
|
10.11972/j.issn.1001-9014.2018.04.014
|
关键词
|
热红外遥感
;
土壤水分
;
黑河流域中游
|
地址
|
1.
中国科学研究院地理科学与资源研究所, 中国科学院陆地水循环及地表过程重点实验室, 北京, 100101
2.
中国水利水电科学研究院防洪抗旱减灾工程技术中心, 北京, 100038
3.
中山大学地理科学与规划学院, 广东省城市化与地理环境空间模拟重点实验室, 广东, 广州, 510275
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-9014 |
学科
|
自动化技术、计算机技术 |
基金
|
中国科学院地理科学与资源研究所中国科学院陆地水循环及地表过程重点实验室基金
;
国家自然科学基金
;
中国水利水电科学研究院专项
;
广东省自然科学基金
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:6313405
|
参考文献 共
43
共3页
|
1.
Koster R D. Soil moisture memory in climate models.
Journal of hydrometeorology,2001,2:558-570
|
CSCD被引
28
次
|
|
|
|
2.
Legates D R. Soil moisture: A central and unifying theme in physical geography.
Progress in Physical Geography,2011,35:65-86
|
CSCD被引
54
次
|
|
|
|
3.
Rodriguez-Iturbe I. On the spatial and temporal links between vegetation,climate, and soil moisture.
Water Resources Research,1999,35:3709-3722
|
CSCD被引
19
次
|
|
|
|
4.
Seneviratne S I. Investigating soil moisture-climate interactions in a changing climate: A review.
Earth-Science Reviews,2010,99:125-161
|
CSCD被引
216
次
|
|
|
|
5.
Ahmadalipour A. Remote sensing of drought: Vegetation,soil moisture,and data assimilation.
In Remote sensing of hydrological extremes,2017:121-149
|
CSCD被引
1
次
|
|
|
|
6.
Mohanty B P. Soil moisture remote sensing: State-of-the-science.
Vadose Zone Journal,2017
|
CSCD被引
9
次
|
|
|
|
7.
Peng J. Recent advances in soil moisture estimation from remote sensing.
Multidisciplinary Digital Publishing Institute,2017
|
CSCD被引
1
次
|
|
|
|
8.
Zhang D. Estimation of soil moisture from optical and thermal remote sensing: A review.
Sensors,2016,16:1308
|
CSCD被引
6
次
|
|
|
|
9.
Price J C. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation.
Water Resources Research,1980,16:787-795
|
CSCD被引
28
次
|
|
|
|
10.
Petropoulos G. A review of ts/vi remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture.
Progress in Physical Geography,2009,33:224-250
|
CSCD被引
14
次
|
|
|
|
11.
Carlson T N. A method to make use of thermal infrared temperature and ndvi measurements to infer surface soil water content and fractional vegetation cover.
Remote sensing reviews,1994,9:161-173
|
CSCD被引
164
次
|
|
|
|
12.
Nemani R R. Estimation of regional surface resistance to evapotranspiration from ndvi and thermal-ir avhrr data.
Journal of Applied meteorology,1989,28:276-284
|
CSCD被引
64
次
|
|
|
|
13.
Sandholt I. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status.
Remote Sensing of environment,2002,79:213-224
|
CSCD被引
488
次
|
|
|
|
14.
韩丽娟. 植被指数-地表温度构成的特征空间研究.
中国科学: D辑,2005,35:371-377
|
CSCD被引
48
次
|
|
|
|
15.
齐述华. 利用MODIS数据产品进行全国干旱监测的研究.
水科学进展,2005,16(1):56-61
|
CSCD被引
38
次
|
|
|
|
16.
Allen R G. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)-model.
Journal of irrigation and drainage engineering,2007,133:380-394
|
CSCD被引
90
次
|
|
|
|
17.
Bastiaanssen W G. A remote sensing surface energy balance algorithm for land (sebal). 1. Formulation.
Journal of hydrology,1998,212:198-212
|
CSCD被引
210
次
|
|
|
|
18.
Norman J M. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature.
Agricultural and Forest Meteorology,1995,77:263-293
|
CSCD被引
103
次
|
|
|
|
19.
Scott C A. Mapping root zone soil moisture using remotely sensed optical imagery.
Journal of Irrigation and Drainage Engineering,2003,129:326-335
|
CSCD被引
5
次
|
|
|
|
20.
Hong S H. Spatial variability of sebal estimated root-zone soil moisture across scales.
International Journal of Remote Sensing,2016,37:4838-4853
|
CSCD被引
2
次
|
|
|
|
|