稀土CeO_2对AlCoCuFeMnNi高熵合金组织与性能的影响
Effects of Rare Earth CeO_2on Microstructure and Properties of AlCoCuFeMnNi High-entropy Alloys
查看参考文献22篇
文摘
|
采用等离子熔覆技术,在45钢基体上制备添加稀土CeO_2的AlCoCuFeMnNi高熵合金涂层。利用XRD,SEM和EDS研究涂层的显微组织和相组成,并测试其显微硬度和磨损性能。结果表明:合金涂层主要由BCC枝晶和FCC枝晶间组织构成。热力学计算表明,未添加稀土CeO_2的涂层中有少量AlCoNi相,而且其枝晶内析出了大量富Fe颗粒,涂层硬度值在260~420HV0.2间呈梯度变化,摩擦因数在0.16~0.57之间。添加1%(质量分数)的稀土CeO_2后,基体中Fe元素向涂层内部的扩散程度降低,涂层底部形成一条宽约32μm的富Fe胞晶过渡层,涂层硬度在400HV0.2左右,摩擦因数稳定在0.28~0.31之间,磨损量为添加前的74.4%,细晶强化是涂层磨损性能提高的主要原因。 |
其他语种文摘
|
The AlCoCuFeMnNi high-entropy alloy cladding layer with CeO_2 was prepared by plasma cladding technology on 45steel.The microstructure and phase composition of the cladding layer were investigated by XRD,SEM and EDS,and its microhardness and wear property were also tested.The results show that the phase structure of the cladding layer is mainly composed of BCC dendrites and FCC interdendrites.Thermodynamic calculation shows a small amount of AlCoNi phase exists in the cladding layer without CeO_2,and a large number of Fe-rich precipitated particles in the dendrites is observed,the hardness value exhibits gradient changes from 260HV0.2 to 420HV0.2,and their friction coefficient is between 0.16and 0.57.After adding 1%(mass fraction)CeO_2,the Fe diffusion decreases into cladding layer,and a 32μm Fe-rich peritectic transition layer is formed on the bottom of the cladding layer.The average hardness value is about 400HV0.2,and their friction coefficient is relatively stable(0.28-0.31).The mass loss of the layer with CeO_2is 74.4% of that without CeO_2.The grain refinement strengthening is the main reason of the improvement of wear properties. |
来源
|
材料工程
,2018,46(8):91-97 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2016.001182
|
关键词
|
高熵合金
;
CeO_2
;
显微组织
;
磨损性能
|
地址
|
1.
中原工学院材料与化工学院, 郑州, 450007
2.
燕山大学, 亚稳材料制备技术与科学国家重点实验室, 河北, 秦皇岛, 066004
3.
苏州科技大学机械工程学院, 江苏, 苏州, 215009
4.
河海大学力学与材料学院, 南京, 210098
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金资助项目
;
河南省郑州市科技攻关项目
|
文献收藏号
|
CSCD:6313108
|
参考文献 共
22
共2页
|
1.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1460
次
|
|
|
|
2.
Zhang Y. Microstructures and properties of high-entropy alloys.
Progress in Materials Science,2014,61:1-93
|
CSCD被引
671
次
|
|
|
|
3.
Varalakshmi S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying.
Journal of Alloys and Compounds,2008,460(2):253-257
|
CSCD被引
36
次
|
|
|
|
4.
Tazuddin. Deciphering micromechanisms of plastic deformation in a novel single phase fccbased MnFeCoNiCu high entropy alloy using crystallographic texture.
Materials Science &Engineering:A,2016,657(7):224-233
|
CSCD被引
6
次
|
|
|
|
5.
Cheng J. Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process.
Plasma Chemistry and Plasma Processing,2013,33(5):979-982
|
CSCD被引
11
次
|
|
|
|
6.
Kunce I. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping.
Journal of Alloys and Compounds,2015,648(5):751-758
|
CSCD被引
20
次
|
|
|
|
7.
梁秀兵. 高熵合金新材料的研究进展.
材料工程,2009(12):75-79
|
CSCD被引
39
次
|
|
|
|
8.
Soare V. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films.
Applied Surface Science B,2015,358:533-539
|
CSCD被引
25
次
|
|
|
|
9.
霍文燚. 高熵合金熔覆涂层的研究进展.
材料导报,2014,28(23):76-79
|
CSCD被引
7
次
|
|
|
|
10.
王智慧. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究.
稀有金属材料与工程,2015,44(3):644-648
|
CSCD被引
8
次
|
|
|
|
11.
张保森. 等离子熔覆(CuCoCrFeNi)_(95)B_5高熵合金涂层研究.
稀有金属材料与工程,2014,43(5):1128-1132
|
CSCD被引
11
次
|
|
|
|
12.
唐定骧.
稀土金属材料,2011:691-701
|
CSCD被引
3
次
|
|
|
|
13.
张光耀. 稀土CeO_2在6063Al表面Ni基激光熔覆中的作用机制.
稀有金属材料与工程,2016,45(4):1003-1007
|
CSCD被引
8
次
|
|
|
|
14.
郑英. 铝合金表面激光熔覆稀土CeO_2+Ni60组织及摩擦磨损性能.
稀有金属,2014,38(5):800-806
|
CSCD被引
10
次
|
|
|
|
15.
周芳. 等离子电弧熔覆Y_2O_3/钴基合金的组织结构及耐磨性能.
稀有金属材料与工程,2008,37(2):294-298
|
CSCD被引
6
次
|
|
|
|
16.
Inoue A. Classification of bulk metallic glasses by atomic size difference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element.
Materials Transactions,2005,46(12):2117
|
CSCD被引
573
次
|
|
|
|
17.
王艳苹.
AlCrFeCoNiCu多组元合金及其复合材料的组织与性能,2009
|
CSCD被引
6
次
|
|
|
|
18.
Yeh J W. Anomalous decrease in X-ray diffraction intensities of CuNiAlCoCrFeSi alloy systems with multi-principal elements.
Materials Chemistry and Physics,2007,103:41-46
|
CSCD被引
74
次
|
|
|
|
19.
Tung C C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system.
Materials Letters,2007,61(1):1-5
|
CSCD被引
56
次
|
|
|
|
20.
卢金斌. 等离子合金化AlCoCrCuFexMnNi高熵合金涂层的组织与性能.
粉末冶金材料科学与工程,2016,21(3):402-409
|
CSCD被引
4
次
|
|
|
|
|