考虑空气阻力影响的流域水文过程模拟研究
Simulation of Basin Hydrological Processes Considering Air Resistance Effect
查看参考文献13篇
文摘
|
降雨入渗时,部分空气会被禁锢在土壤中,影响水分下渗。目前分布式水文模型构建过程中,尚未考虑空气阻力对降雨入渗的影响,这制约着模型的适用性。论文基于Green-Ampt模型,引入土壤含水量饱和度系数、土壤导水系数饱和度系数、土壤进气值和土壤进水值4个参数量化空气阻力影响,改进分布式水文模型WEP-L模型。最后,选择清水河流域和柳江流域进行实例研究,检验WEP-L模型的改进效果。结果表明:与传统WEP-L模型相比,改进的WEP-L模型在清水河流域(面积较小)应用时可显著提高流域水文过程模拟精度,尤其是在暴雨洪水期,日径流模拟相对误差由40.57%降低到9.43%,Nash效率系数由-0.24提高到0.57。而在柳江流域(面积较大)应用时,模型改进后模拟效果虽有所改善,但不够显著。 |
其他语种文摘
|
In the process of rainfall infiltration,part of the air will be trapped in the soil,which affects soil moisture infiltration.However,when simulating the basin hydrological processes,the current distributed hydrological models fail to consider the effect of air resistance on rainfall infiltration.This effect is mainly reflected in two aspects: 1) The air trapped in the soil results in that the actual moisture content and hydraulic conductivity of the soil profile are less than the saturated water content and saturated hydraulic conductivity,respectively.2) Air trapped in the soil creates air pressure,which reduces soil infiltration rate.Consequently,the applicability and simulation accuracy of existing models are hindered.Based on the Green-Ampt model,the saturation coefficient related to soil moisture content and saturation coefficient related to soil water conductivity were introduced in this paper to correct the saturated water content and saturated hydraulic conductivity of the distributed hydrological model.Simultaneously,this paper introduced the air bubbling pressure and water bubbling pressure to quantify the effect of air pressure on soil water suction at wetting front.Using these four parameters,the rainfall infiltration module in the distributed hydrological model (WEP-L model) was modified.Finally,the traditional WEP-L model and the modified model were used to simulate the rainfall-runoff process in the Qingshui River Basin and the Liujiang River Basin,and the simulation results were compared and analyzed using the rainfall runoff data at Qingbaikou Station and Liuzhou Station,respectively.The results show that when using the modified WEP-L model in the Qingshui River Basin,a small watershed,the simulation accuracy was significantly improved,especially in rainstorm periods.For the simulation of monthly runoff in Qingbaikou Station,when using the modified WEP-L model the relative error between simulated and measured values decreased from 53.71% to 23.50% compared when using the traditional model,and Nash-Sutcliffe efficiency coefficient increased from 0.63 to 0.90 during the calibration period.Moreover,during the validation period,the relative error decreased from 50.39% to 20.87%,and Nash-Sutcliffe efficiency coefficient increased from 0.78 to 0.84.For the simulation of daily runoff in rainstorm periods,the absolute relative error of flood peaks decreased from 23.64% to 14.63%.While using the modified model in the Liujiang River Basin,a large watershed,the improvement of simulation accuracy was not obvious.The reason may be that: 1) Compared with the small watershed,the impact factors of rainfall-runoff in the large watershed are more complicated and diverse,and the adaptability of the catchment to the changes in rainfall intensity and underlying surface conditions is stronger,which make the effect of air resistance more difficult to be significantly reflected.2) The climatic zones and runoff mechanisms of the two basins are different.Qingshui River Basin is located in the semi-humid and semi-humid area where the runoff yield is dominated by excessive infiltration,so the effect of air resistance is relatively greater. |
来源
|
自然资源学报
,2018,33(8):1463-1474 【核心库】
|
DOI
|
10.31497/zrzyxb.20170671
|
关键词
|
水文模拟
;
入渗产流
;
空气阻力
;
Green-Ampt模型
;
WEP-L模型
|
地址
|
中国水利水电科学研究院, 流域水循环模拟与调控国家重点实验室, 北京, 100038
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3037 |
学科
|
地球物理学 |
基金
|
国家973计划
;
国家重点研发计划课题
;
中国工程院咨询项目
|
文献收藏号
|
CSCD:6312346
|
参考文献 共
13
共1页
|
1.
王中根. 分布式水文模型的参数率定及敏感性分析探讨.
自然资源学报,2007,22(4):649-655
|
CSCD被引
47
次
|
|
|
|
2.
Beven K J. A physically based, variable contributing area model of basin hydrology.
Hydrological Sciences Journal,1979,24(1):43-69
|
CSCD被引
283
次
|
|
|
|
3.
Refsgaard J C. MIKE SHE.
Computer Models of Watershed Hydrology,1995:809-846
|
CSCD被引
10
次
|
|
|
|
4.
Liang X. A simple hydrologically based model of land surface water and energy fluxes for general circulation models.
Journal of Geophysical Research:Atmospheres,1994,99(D7):14415-14428
|
CSCD被引
179
次
|
|
|
|
5.
Neitsch S L.
Soil and water assessment tool theoretical documentation version 2009,2011
|
CSCD被引
38
次
|
|
|
|
6.
Jia Y W. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River Basin.
Journal of Hydrology,2006,331(3):606-629
|
CSCD被引
35
次
|
|
|
|
7.
Greenwh. Studies on soil phyics.
The Journal of Agricultural Science,1911,4(1):1-24
|
CSCD被引
181
次
|
|
|
|
8.
李援农. 土壤空气压力影响下的非饱和入渗格林-安姆特模型.
水利学报,2005,36(6):733-736
|
CSCD被引
29
次
|
|
|
|
9.
梁爱民. 土壤中空气对土结构和入渗过程的影响.
水科学进展,2009,20(4):502-506
|
CSCD被引
15
次
|
|
|
|
10.
Hammecker C. Experimental and numerical study of water flow in soil under irrigation in northern Senegal:Evidence of air entrapment.
European Journal of Soil Science,2003,54:491-503
|
CSCD被引
17
次
|
|
|
|
11.
马英. 考虑禁锢空气影响的层状土壤Green-Ampt入渗模型及试验验证.
水利学报,2011,42(9):1034-1043
|
CSCD被引
8
次
|
|
|
|
12.
甘永德. 考虑空气阻力作用的分层土壤降雨入渗模型.
水利学报,2015,46(2):164-173
|
CSCD被引
5
次
|
|
|
|
13.
贾仰文.
分布式流域水文模型原理与实践,2005
|
CSCD被引
96
次
|
|
|
|
|