云计算中任务调度优化策略的研究
Research on Task Scheduling Optimization Strategy in Cloud Computing
查看参考文献16篇
文摘
|
针对基于蚁群算法的任务调度负载不均衡与收敛速度较慢的问题,提出一种改进的任务调度优化算法。通过赋予权重的方法对蚁群算法的信息素更新规则进行优化,加快求解速度,利用动态更新挥发系数优化算法的综合性能,并在局部信息素的更新过程中,引入虚拟机负载权重系数,从而保证虚拟机的负载均衡。实验结果表明,改进算法的任务调度策略在保证任务得到合理分配的同时,还可以提高收敛速度并缩短总执行时间。 |
其他语种文摘
|
Aiming at the problem that task scheduling based on ant colony algorithm has unbalanced load and slow convergence speed,an improved task scheduling optimization algorithm is proposed. The pheromone update rules of the ant colony algorithm are optimized by weighting methods to accelerate the solution speed,and the comprehensive performance of the dynamic update volatilization coefficient optimization algorithm is utilized,and the load weight coefficient of the virtual machine is introduced during the update process of the local pheromone to ensure the load balancing of virtual machines. Experimental results show that the task scheduling strategy of the improved algorithm ensures that the task is reasonably allocated,and at the same time,the convergence speed of the algorithm is improved and the total execution time is shortened. |
来源
|
计算机工程
,2018,44(8):14-18 【扩展库】
|
DOI
|
10.19678/j.issn.1000-3428.0049169
|
关键词
|
蚁群算法
;
信息素
;
虚拟机
;
权重系数
;
收敛速度
|
地址
|
长沙理工大学计算机与通信工程学院, 长沙, 410114
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3428 |
学科
|
自动化技术、计算机技术 |
文献收藏号
|
CSCD:6306145
|
参考文献 共
16
共1页
|
1.
Atiewi S. A comparative analysis of task scheduling algorithms of virtual machines in cloud environment.
Journal of Computer Science,2015,11(6):804-812
|
CSCD被引
2
次
|
|
|
|
2.
Wu K. Distributed online scheduling and routing of multicast-oriented tasks for profit-driven cloud computing.
IEEE Communications Letters,2016,20(4):684-687
|
CSCD被引
2
次
|
|
|
|
3.
Babu K R R. Load balancing of tasks in cloud computing environment based on bee colony algorithm.
Proceedings of the 5th International Conference on Advances in Computing and Communications,2016:215-226
|
CSCD被引
1
次
|
|
|
|
4.
Bidoki M Z. A social cloud computing: employing a bee colony algorithm for sharing and allocating tourism resources.
Modern Applied Science,2016,10(5):177
|
CSCD被引
1
次
|
|
|
|
5.
Zuo Liyun. A multi-objective optimization scheduling method based on the Colony algorithm in cloud computing.
IEEE Access,2015,3:2687-2699
|
CSCD被引
5
次
|
|
|
|
6.
Gao R. Dynamic load balancing strategy for cloud computing with ant colony optimization.
Future Internet,2015,7(4):465-483
|
CSCD被引
2
次
|
|
|
|
7.
Lakshmi R D. A dynamic approach to task scheduling in cloud computing using genetic algorithm.
Journal of Theoretical & Applied Information Technology,2016,41(1)
|
CSCD被引
1
次
|
|
|
|
8.
Liu C Y. A task scheduling algorithm based on genetic algorithm and ant colony optimization in cloud Computing.
Proceedings of International Symposium on Distributed Computing and Applications to Business,Engineering and Science,2015:68-72
|
CSCD被引
1
次
|
|
|
|
9.
Xu Z. Task scheduling based on multi-objective genetic algorithm in cloud computing.
Journal of Information & Computational Science,2015,12(4):1429-1438
|
CSCD被引
2
次
|
|
|
|
10.
李智勇. 异构云环境多目标Memetic优化任务调度方法.
计算机学报,2016,39(2):377-390
|
CSCD被引
13
次
|
|
|
|
11.
Abdullahi M. Symbiotic organism search optimization based task scheduling in cloud computing environment.
Future Generation Computer Systems,2016,56:640-650
|
CSCD被引
4
次
|
|
|
|
12.
Balusamy B. Ant colony-based load balancing and fault recovery for cloud computing environment.
International Journal of Advanced Intelligence Paradigms,2017,9(2/3):204
|
CSCD被引
1
次
|
|
|
|
13.
陶晓玲. 一种基于分层多代理的云计算负载均衡方法.
电子学报,2016,44(9):2106-2113
|
CSCD被引
6
次
|
|
|
|
14.
李琳. 基于蚁群算法的面向服务软件的部署优化方法.
电子学报,2016,44(1):123-129
|
CSCD被引
5
次
|
|
|
|
15.
Yang Q. Adaptive multi-modal continuous ant colony optimization.
IEEE Transactions on Evolutionary Computation,2017,21(2):191-205
|
CSCD被引
25
次
|
|
|
|
16.
曾梦凡. 利用蚁群算法生成覆盖表:探索与挖掘.
软件学报,2016,27(4):855-878
|
CSCD被引
9
次
|
|
|
|
|