高温气体热化学反应的DSMC微观模型分析
ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION
查看参考文献37篇
文摘
|
热化学耦合的非平衡现象一直是高温气体热化学问题研究的难点,制约了诸如爆轰波胞格结构、低温点火速率等现象的分析.本文以高温氮气离解和氢氧燃烧中的链式置换反应为例,从微观反应概率、振动态指定的反应速率、热力学非平衡态的宏观反应速率、碰撞后的能量再分配等角度,分析了直接蒙特卡罗模拟中的典型化学反应模型(TCE, VFD, QK模型)的微观动力学性质.研究发现,无论是高活化能的高温离解反应还是低活化能的链式置换反应,实际参与反应的分子的振动能概率分布都偏离了平衡态的Boltzmann分布,包含较强振动能额外影响的VFD模型可以很好地模拟高温离解反应,而TCE (VFD的一个特例)和QK模型对活化能较低的链式置换反应的预测效果相对更好.此外,化学反应碰撞后的能量再分配应遵循微观细致平衡原理,细微的偏差都可能造成平动能和振动能难以达到最终的平衡状态.直接蒙特卡罗模拟的应用评估结果表明,化学反应的振动倾向对热化学耦合过程产生了明显的影响,特别是由于高振动能分子更多地参与了化学反应,气体平均振动能的下降将影响后续化学反应的进行. |
其他语种文摘
|
The non-equilibrium phenomenon of thermochemical coupling has been a difficult problem in high temperature aerothermal dynamics, and hinders to analyze phenomena such as cell structure of detonation wave and ignition speed of low temperature combustion. In this paper, typical chemical reaction models (TCE, VFD, QK models) employed in the direct simulation Monte Carlo (DSMC) simulation are analyzed using two examples (namely, N_2 dissociation at high temperature, and chain displacement reaction in H_2 – O_2 combustion) from microscopic reaction probability, vibrational state specific reaction rates, total reaction rate under thermal nonequilibrium condition, and post-collision redistribution of internal energy. It is found that the probability distribution of vibrational energy of reacted molecules deviates from the equilibrium Boltzmann distribution for both the high temperature dissociation reaction having high activation energy and the chain displacement reaction having low activation energy. The VFD model with strong vibrational favored contribution can predict well the high temperature dissociation reaction, whereas the TCE model (a special case of VFD model) and QK model are better for the chain displacement reaction. Besides, the post-collision redistribution of internal energy should follow the principle of detailed balance, as small deviations may cause inequality between the translational and vibrational energy under final equilibrium state. The DSMC simulation results also show that the vibrational favor of chemical reactions has an obvious effect on the thermochemical coupling process. Particularly, because molecules having high vibrational energy are more easily to have chemical reactions, the decrease of the average vibrational energy of the gas will affect the subsequent chemical reactions. |
来源
|
力学学报
,2018,50(4):722-733 【核心库】
|
DOI
|
10.6052/0459-1879-18-056
|
关键词
|
热化学非平衡
;
直接蒙特卡罗方法
;
反应模型
;
微观分析
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
中国科学院战略性先导科技专项
;
国家自然科学基金
|
文献收藏号
|
CSCD:6305613
|
参考文献 共
37
共2页
|
1.
陈松. 高超声速飞行流场中的最大氧离解度分析.
力学学报,2014,46(1):20-27
|
CSCD被引
5
次
|
|
|
|
2.
彭傲平. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析.
物理学报,2017,66(20):204703
|
CSCD被引
7
次
|
|
|
|
3.
张子健. 振动激发对高超声速气动力/热影响.
力学学报,2017,49(3):616-626
|
CSCD被引
10
次
|
|
|
|
4.
Fievet R. Effect of thermal nonequilibrium on ignition in scramjet combustors.
Proceedings of the Combustion Institute,2017,36(2):2901-2910
|
CSCD被引
6
次
|
|
|
|
5.
Shi L. Assessment of vibrational nonequilibrium effect on detonation cell size.
Combustion Science and Technology,2017,189(5):841-885
|
CSCD被引
2
次
|
|
|
|
6.
方宜申. 圆球诱发斜爆轰波的数值研究.
力学学报,2017,49(2):268-273
|
CSCD被引
8
次
|
|
|
|
7.
Park C. Assessment of two-temperature kinetic model for ionizing air.
Journal of Thermophysics and Heat Transfer,1989,3(3):233-244
|
CSCD被引
24
次
|
|
|
|
8.
Park C.
The limits of two-temperature model. AIAA Paper, 2010-911,2010
|
CSCD被引
1
次
|
|
|
|
9.
Voelkel S. Effect of thermal nonequilibrium on reactions in hydrogen combustion.
Shock Waves,2016,26(5):539-549
|
CSCD被引
2
次
|
|
|
|
10.
Bird G A.
Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows,1994
|
CSCD被引
5
次
|
|
|
|
11.
樊菁. 稀薄气体动力学:进展与应用.
力学进展,2013,43(2):185-201
|
CSCD被引
22
次
|
|
|
|
12.
Haas B L. Models for direct Monte Carlo simulation of coupled vibration-dissociation.
Physics of Fluids A: Fluid Dynamics,1993,5(2):478-489
|
CSCD被引
5
次
|
|
|
|
13.
Boyd I D. Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations.
Physics of Fluids,1997,9(4):1162-1170
|
CSCD被引
2
次
|
|
|
|
14.
Bondar Y. On the accuracy of DSMC modeling of rarefied flows with real gas effects.
AIP Conference Proceedings,2005,762(1):607-613
|
CSCD被引
1
次
|
|
|
|
15.
Bondar Y A.
DSMC dissociation model based on twotemperature chemical rate constant. AIAA Paper, 2007-614,2007
|
CSCD被引
1
次
|
|
|
|
16.
Wysong I J. Comparison of DSMC reaction models with QCT reaction rates for nitrogen.
AIP Conference Proceedings,2016,1786(1):050021
|
CSCD被引
1
次
|
|
|
|
17.
Bird G A. The QK model for gas-phase chemical reaction rates.
Physics of Fluids,2011,23(10):106101
|
CSCD被引
6
次
|
|
|
|
18.
Baikov B S. Inverse Laplace transform as a tool for calculation of state-specific cross sections of inelastic collisions.
AIP Conference Proceedings,2016,1786(1):090005
|
CSCD被引
1
次
|
|
|
|
19.
Luo H. Ab initio state-specific N_2+O dissociation and exchange modeling for molecular simulations.
The Journal of Chemical Physics,2017,146(7):074303
|
CSCD被引
1
次
|
|
|
|
20.
Sebastiao I B. DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models.
Physics of Fluids,2017,29(1):017102
|
CSCD被引
1
次
|
|
|
|
|