帮助 关于我们

返回检索结果

基于局部形状结构分类的心血管内超声图像中-外膜边界检测
Media-Adventitia Border Detection Based on Local Shape Structure Classification for Intravascular Ultrasound Images

查看参考文献27篇

袁绍锋 1,2   杨丰 1,2 *   刘树杰 3   季飞 3   黄靖 1,2  
文摘 本文提出了一种基于局部形状结构分类的心血管内超声( Intravascular Ultrasound, IVUS)图像中-外膜边界检测方法.首先利用k-均值( k-means)聚类方法,确定局部形状结构类别;其次通过类别标号索引图像块,并对其进行积分通道特征和自相似性特征提取,构建多分类随机决策森林模型;最后由分类模型寻找IVUS图像的关键点,采用曲线拟合方法,实现IVUS图像中-外膜边界检测.实验结果表明,本文方法能够有效地解决IVUS图像中斑块、伪影和血管分支等造成边缘难以准确检测的问题,与已有算法相比,其JM( Jaccard Measure, JM)达到了88.9%,PAD( Percentage of Area Difference,PAD)降低了19.1%,HD( Hausdorff Distance,HD)减少了9.7%,更准确地识别目标边界的关键点,成功地检测出完整的中-外膜边界.
其他语种文摘 This paper presents an efficient and effective approach based on local shape structure classification for detecting media-adventitia border in intravascular ultrasound ( IVUS) images. First, the category of local shape structures is found by using k-means clustering method. Second,patches from IVUS images indexed by the category are extracted by two kinds of features including integral channel and self-similarities features,and therefore a random decision forest model is constructed. Finally, the key points of testing IVUS images are detected using the trained classification model. Then with the help of curve fitting methods,detection of media-adventitia border is acquired. Experimental results demonstrate that the proposed algorithm effectively relieves the difficulties of interference factors such as plaques, artifacts and side vessel, and more accurately recognizes the key points of target border compared with existing algorithms,detects the whole target border successfully. The Jaccard Measure ( JM) of media-adventitia border detected by the algorithm is 88.9%,Percentage of Area Difference ( PAD) and Hausdorff Distance ( HD) measures are reduced by 19.1% and 9.7% respectively.
来源 电子学报 ,2018,46(7):1601-1608 【核心库】
DOI 10.3969/j.issn.0372-2112.2018.07.009
关键词 医学图像分析 ; 机器学习 ; 随机决策森林 ; k-均值聚类 ; 局部形状结构 ; 心血管内超声 ; 中-外膜边界检测
地址

1. 南方医科大学生物医学工程学院, 广东, 广州, 510515  

2. 南方医科大学, 广东省医学图像处理重点实验室, 广东, 广州, 510515  

3. 华南理工大学电子与信息学院, 广东, 广州, 510641

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:6285012

参考文献 共 27 共2页

1.  刘茜蒨(译). 轻松掌握血管内超声,2009:1-31 CSCD被引 2    
2.  汪友生. 血管壁小应变数学模型研究. 电子学报,2014,42(10):2086-2091 CSCD被引 2    
3.  李春芳. 基于MAP的超声图像分解去噪算法研究. 电子学报,2014,42(7):1291-1298 CSCD被引 5    
4.  邢东. 结合硬斑块特征的心血管内超声图像中-外膜边缘检测. 中国生物医学工程学报,2012,31(1):25-31 CSCD被引 2    
5.  Giannoglou G D. A novel active contour model for fully automated segmentation of intravascular ultrasound images: In vivo validation in human coronary arteries. Computers in Biology and Medicine,2007,39(7):1292-1302 CSCD被引 10    
6.  Essa E. Shape prior model for media-adventitia border segmentation in IVUS using graph cut. International MICCAI Workshop in Medical Computer Vision,2012:114-123 CSCD被引 1    
7.  Unal G. Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Transactions on Information Technology in Biomedicine,2008,12(3):335-347 CSCD被引 8    
8.  Mendizabal-Ruiz E G. Segmentation of the luminal border in intravascular ultrasound Bmode images using a probabilistic approach. Medical Image Analysis,2013,17(6):649-670 CSCD被引 5    
9.  Rotger D. Blood detection in IVUS images for 3D volume of lumen changes measurement due to different drugs administration. International Conference on Computer Analysis of Images and Patterns,2007:285-292 CSCD被引 2    
10.  林慕丹. 结合先验形状信息和序贯学习的心血管内超声外弹力膜检测. 中国图象图形学报,2016,21(5):646-656 CSCD被引 4    
11.  Papadogiorgaki M. Image analysis techniques for automated IVUS contour detection. Ultrasound in Medicine & Biology,2008,34(9):1482-1498 CSCD被引 3    
12.  Lim J J. Sketch tokens: a learned mid-level representation for contour and object detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2013:3158-3165 CSCD被引 2    
13.  Katouzian A. A state-ofthe-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Transactions on Information Technology in Biomedicine,2012,16(5):823-834 CSCD被引 4    
14.  魏静明. 利用抗噪纹理特征的快速鸟鸣声识别. 电子学报,2015,43(1):185-190 CSCD被引 12    
15.  Tola E. A fast local descriptor for dense matching. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8 CSCD被引 3    
16.  Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information Theory,1982,28(2):129-137 CSCD被引 205    
17.  Arthur D. k-means + +: The advantages of careful seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,2007:1027-1035 CSCD被引 111    
18.  Dollar P. Integral channel features. Proceedings of the British Machine Vision Conference,2009:91-101 CSCD被引 2    
19.  Shechtman E. Matching local self-similarities across images and videos. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007:1-8 CSCD被引 9    
20.  Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698 CSCD被引 1780    
引证文献 3

1 姚哲维 改进型循环生成对抗网络的血管内超声图像增强 计算机科学,2019,46(5):221-227
CSCD被引 1

2 叶红梅 结合极值区域检测的血管内超声图像并行分割 中国图象图形学报,2020,25(2):378-390
CSCD被引 1

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号