帮助 关于我们

返回检索结果

引入城市公共设施要素的人口数据空间化方法研究
Spatialization Method of Demographic Data Based on Urban Public Facility Elements

查看参考文献30篇

董南 1   杨小唤 2,3 *   黄栋 2,3   韩冬锐 2,3  
文摘 精细尺度的人口分布是当前人口地理学研究的热点和难点,其在灾害评估、资源配置、智慧城市建设等方面应用广泛.城区是人口分布集中的区域,揭示该区域人口分布差异是精细尺度人口空间化研究的核心内容.本研究基于城市公共设施要素点位数据,对居住建筑斑块进行分类,以社区作为人口数据空间化转换尺度,构建各类别斑块面积与人口数量的多元回归模型,生成了宣州城区居住建筑尺度的人口空间数据,揭示了研究区人口空间分布差异.结果表明:①该方法生成的人口空间数据精度较高,结果可信.779个居住建筑斑块中,估算人数在合理区内的斑块个数占比为35.4%,相对误差在 -20%~20%范围内的斑块个数比例之和为61.2%;城东社区、思佳社区作为精度验证单元,其人数估算的相对误差绝对值低于9%;②城市公共设施要素数据,尤其是中小学及幼儿园、菜市场及水果店,是建筑物尺度上人口分布的指示性因素,其对多层居住建筑人数的估算精度较高,但对中高层居住建筑人数的估算精度偏低.
其他语种文摘 The spatial distribution of population at fine- scale has increasingly become research hotspot and a difficulty issue in the field of population geography. It has practical application value and scientific significance for relevant researches, such as disaster assessment, resource allocation and construction of smart cities. The population is concentrated in the urban area. Revealing the population distribution difference in this area is the core content of spatializing population data at the fine scale. In this paper, the urban area of Xuanzhou District was selected as the research area. The population distribution vector data at residential building scale was established by proposing a spatialization method based on urban public facility elements. The method classified residential building patches. And it treated residential building patches as population distribution locations in geographical space with community boundary and community- level demographic data as the control unit. A multiple regression model of patch area and population was constructed. The spatialization method used in this study can reveal the detailed information about the population distribution in urban area. Results show that: ① The population distribution data, obtained by adopting urban public facility elements, is proved to be high accurate and reliable. The number of patches with estimated population in a reasonable range is 35.4% of 779 residential building patches. And the proportion of patches with relative errors of ±20% in population estimation is 61.2%. Moreover, the Chengdong community and Sijia community served as accuracy verification units, the absolute relative error of population estimation in these communities is less than 9%; ② Urban public facility elements, especially primary and secondary schools and kindergartens, vegetable markets and fruit shops, are important factors for accurate estimation of population within a residential building. Their estimation accuracy of number of people is high ifor multi-storied building, but lower for moderate high-rise building.
来源 地球信息科学学报 ,2018,20(7):918-928 【核心库】
DOI 10.12082/dqxxkx.2018.170625
关键词 人口 ; 空间化 ; 公共设施要素 ; 居住建筑 ; 斑块
地址

1. 建设综合勘察研究设计院有限公司, 北京, 100007  

2. 中国科学院地理科学与资源研究所, 资源环境信息系统国家重点实验室, 北京, 100101  

3. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 1560-8999
学科 测绘学
基金 国家自然科学基金项目
文献收藏号 CSCD:6282200

参考文献 共 30 共2页

1.  柏中强. 基于乡镇尺度的中国25省区人口分布特征及影响因素. 地理学报,2015,70(8):1229-1242 CSCD被引 57    
2.  董南. 基于居住空间属性的人口数据空间化方法研究. 地理科学进展,2016,35(11):1317-1328 CSCD被引 13    
3.  卓莉. 基于多智能体模型与建筑物信息的高空间分辨率人口分布模拟. 地理研究,2014,33(3):520-531 CSCD被引 20    
4.  Jia P. Dasymetric modeling: A hybrid approach using land cover and tax parcel data for mapping population in Alachua County, Florida. Applied Geography,2016,66:100-108 CSCD被引 3    
5.  符海月. 人口数据格网化模型研究进展综述. 人文地理,2006,21(3):115-119 CSCD被引 25    
6.  林丽洁. 人口统计数据空间化模型综述. 亚热带资源与环境学报,2010,5(4):10-16 CSCD被引 25    
7.  柏中强. 人口数据空间化研究综述. 地理科学进展,2013,32(11):1692-1702 CSCD被引 57    
8.  董南. 人口数据空间化研究进展. 地球信息科学学报,2016,18(10):1295-1304 CSCD被引 34    
9.  田永中. 基于土地利用的中国人口密度模拟. 地理学报,2004,59(2):283-292 CSCD被引 98    
10.  卓莉. 基于夜间灯光数据的中国人口密度模拟. 地理学报,2005,60(2):266-276 CSCD被引 124    
11.  闫庆武. 基于居民点密度的人口密度空间化. 地理与地理信息科学,2011,27(5):95-98 CSCD被引 42    
12.  Mennis J. Generating surface models of population using dasymetric mapping. The Professional Geographer,2003,55(1):31-42 CSCD被引 20    
13.  廖顺宝. 基于GIS的青藏高原人口统计数据空间化. 地理学报,2003,58(1):25-33 CSCD被引 113    
14.  Yue T X. Numerical simulation of population distribution in China. Population and Environment,2003,25(2):141-163 CSCD被引 16    
15.  Su M. Multi-layer multi-class dasymetric mapping to estimate population distribution. Science of the Total Environment,2010,408(20):4807-4816 CSCD被引 4    
16.  Krunic N. Dasymetric mapping of population distribution in Serbia based on soil sealing degrees layer. Surface Models for Geosciences,2015:137-149 CSCD被引 3    
17.  康停军. 基于GIS和多智能体的城市人口分布模拟. 中山大学学报·自然科学版,2012,51(3):135-142 CSCD被引 5    
18.  Dong P L. Evaluation of small-area population estimation using LiDAR, Landsat TM and parcel data. International Journal of Remote Sensing,2010,31(21):5571-5586 CSCD被引 5    
19.  Silvan-Cardenas J L. Assessing fine-spatial-resolution remote sensing for small-area population estimation. International Journal of Remote Sensing,2010,31(21):5605-5634 CSCD被引 5    
20.  Patel N N. Improving large area population mapping using geotweet densities. Transactions in GIS,2016,20(3):1-15 CSCD被引 1    
引证文献 6

1 李泽宇 引入兴趣点的地理加权人口空间分布模型研究———以天津市为例 遥感信息,2019,34(2):113-117
CSCD被引 7

2 杜培培 基于多源数据的中国海岸带地区人口空间化模拟 地球信息科学学报,2020,22(2):207-217
CSCD被引 7

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号