GAP-HDI/CL-20纳米复合含能材料的制备、表征及其热分解特性
Preparation,Characterization and Thermal Decomposition Behavior of GAP-HDI/CL-20 Nano-composite Energetic Materials
查看参考文献18篇
文摘
|
以聚叠氮缩水甘油醚(GAP)为含能骨架,六亚甲基二异氰酸酯(HDI)为交联剂,采用溶胶-凝胶法结合真空冷冻干燥技术,制备了CL-20质量分数分别为25%、45%、60%的GAP-HDI/CL-20纳米复合含能材料。利用 SEM、Raman、FT-IR对其结构和形貌进行了表征;利用DTA对其热分解特性进行了研究;根据不同升温速率下的DTA曲线测试结果对所制备样品的热分解动力学参数、热力学参数和热爆炸临界温度进行了计算。结果表明, CL-20粒子成功负载到了GAP-HDI凝胶骨架中,形貌由棱柱状转变为类球形,且粒径为纳米级;GAP-HDI/CL-20纳米复合含能材料的初始热分解峰温较原料CL-20均有所提前;CL-20质量分数分别为25%、45%、60%的GAP-HDI/CL-20纳米复合含能材料在高温热分解阶段表观活化能分别为224.9、228.9、231.7kJ/mol,与原料CL- 20相比,分别降低了28.4、24.4和21.6kJ/mol,说明纳米复合粒子的热分解活性得以提高;GAP-HDI/L-20纳米复合含能材料的热力学参数和热爆炸临界温度均随着CL-20含量的增加而增大。 |
其他语种文摘
|
With glycidyl azide polymer(GAP)as energetic gel matrix and hexamethylene diisocyanate(HDI)as cross-linking agent,GAP-HDI/CL-20nano-composite energetic materials containing 25%,45%and 60% CL-20in mass ratio were prepared by the sol-gel method and vacuum freezing-drying technology.Their structure and morphology were characterized by SEM,Raman and FT-IR,and the thermal decomposition characteristics were studied by DTA.According to the test results of DTA curves at different heating rates,the thermal decomposition kinetic parameters,thermodynamic parameters and critical temperature of thermal explosion of the prepared samples were calculated.The results show that CL-20particles were successfully loaded into GAP-HDI gel skeleton.The morphologies of CL-20particles are changed from prism to spheroid and the particle sizes are nano-scale.The initial thermal decomposition temperature of GAP-HDI/CL-20is earlier than that of raw material CL-20.The apparent activation energies of GAP-HDI/CL-20nano-composite energetic materials with CL-20mass fraction of 25%,45%and 60%are 224.9,228.9and 231.7kJ/mol,respectively,which are decreased by 28.4,24.4and 21.6kJ/mol compared with that of raw material CL-20,indicating that the thermal decomposition activity of GAP-HDI/CL-20is improved, the thermodynamic parameters and the critical temperature of thermal explosion increase with the increase of CL-20content. |
来源
|
火炸药学报
,2018,41(3):243-249 【核心库】
|
DOI
|
10.14077/j.issn.1007-7812.2018.03.005
|
关键词
|
GAP-HDI/CL-20
;
纳米复合含能材料
;
热力学
;
动力学
;
热爆炸临界温度
|
地址
|
1.
南京理工大学化工学院, 国家特种超细粉体工程中心, 江苏, 南京, 210094
2.
北方兴安化学工业有限公司, 山西, 太原, 030008
3.
西安近代化学研究所, 陕西, 西安, 710065
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-7812 |
学科
|
武器工业;化学工业 |
基金
|
北化集团青年科技创新专项项目
|
文献收藏号
|
CSCD:6276572
|
参考文献 共
18
共1页
|
1.
Berner M K. Nanoparticles of energetic materials:synthesis and properties.
Combution Explosion &Shock Waves,2013,49(6):625-647
|
CSCD被引
4
次
|
|
|
|
2.
Kumar R. Preparation of nano-RDX by evaporation assisted solvent-antisolvent interaction.
Propellants,Explosives,Pyrotechnics,2014,39(3):383-389
|
CSCD被引
6
次
|
|
|
|
3.
Guo X D. Massive preparation of reduced-sensitivity nano CL-20and its characterization.
Journal of Energetic Materials,2015,33(1):25-33
|
CSCD被引
20
次
|
|
|
|
4.
Tillotson T M. Nanostructured energetic materials using sol-gel methodologies.
Journal of Non-Crystalline Solids,2000,285(1):338-345
|
CSCD被引
2
次
|
|
|
|
5.
储峰. 溶剂-非溶剂法在含能材料中的应用.
化学推进剂与高分子材料,2010,8(3):38-41
|
CSCD被引
8
次
|
|
|
|
6.
王维康. Al /CuO复合物的制备及其热反应性能研究.
固体火箭技术,2016,39(6):784-788
|
CSCD被引
1
次
|
|
|
|
7.
Essel J T. Formation and characterization of nano-sized RDX particles produced using the RESS-AS process.
Propellants, Explosives,Pyrotechnics,2012,37(6):699-706
|
CSCD被引
5
次
|
|
|
|
8.
Ji W. Preparation and characterization of CL-20/EPDM by a crystal refinement and spray drying method.
Central European Journal of Energetic Materials,2015,12(4):831-840
|
CSCD被引
3
次
|
|
|
|
9.
Thiruvengadathan R. Enhanced combustion characteristics of bismuth trioxide-aluminum nanocomposites prepared through graphene oxide directed self-assembly.
Propellants, Explosives,Pyrotechnics,2015,40(5):729-734
|
CSCD被引
6
次
|
|
|
|
10.
Wang J Y. Preparation of nano-composite energetic material RDX/Fe_2O_3by solgel method.
Journal of Solid Rocket Technology,2014,37(2):228-232
|
CSCD被引
2
次
|
|
|
|
11.
汝承博. 用于喷墨打印微装药方法的纳米铝热剂含能油墨研究.
火工品,2013(4):33-36
|
CSCD被引
10
次
|
|
|
|
12.
Li G P. The preparation and properties of AP-based nano-limit growth energetic materials.
Advanced Materials Research,2014,924:105-109
|
CSCD被引
3
次
|
|
|
|
13.
Nie F. Sol-gel synthesis of nanocomposite crystalline HMX/AP coated by resorcinol-formaldehyde.
Journal of Physics &Chemistry of Solids,2010,71(2):109-113
|
CSCD被引
13
次
|
|
|
|
14.
晋苗苗. RF/AP纳米复合材料的制备与表征.
火炸药学报,2012,35(6):65-69
|
CSCD被引
3
次
|
|
|
|
15.
Li G P. Synthesis and properties of RDX/GAP nano-composite energetic materials.
Colloid &Polymer Science,2015,293(8):2269-2279
|
CSCD被引
8
次
|
|
|
|
16.
宋振伟. 溶剂中ε-CL-20的晶型变化.
含能材料,2010,18(6):648-653
|
CSCD被引
8
次
|
|
|
|
17.
Kissinger H E. Reaction kinetics in differential thermal analysis.
Analytical Chemistry,1957,29(11):1702-1706
|
CSCD被引
1294
次
|
|
|
|
18.
Wang Y L. Synthesis, crystal structure and thermal behavior of 4-amino-3,5-dinitropyrazole copper salt.
Chinese Chemical Letter,2014,25(6):902-906
|
CSCD被引
6
次
|
|
|
|
|