38MnVS6钢中硫元素扩散对激光熔覆涂层形貌和组织的影响
Effect of Sulfur Diffusion in 38MnVS6 Steel on Morphology and Microstructure of Laser Cladding Layers
查看参考文献21篇
文摘
|
利用激光熔覆技术在38MnVS6钢基体上熔覆了CoCrW粉末,研究了不同扫描速度下基体中活性元素对涂层形貌和组织的影响。结果表明,当送粉速率为5.60g·min~(-1),扫描速度小于5mm·s~(-1)时,涂层的熔深较大,涂层与基体的结合线向下凹陷;当扫描速度大于6mm·s~(-1)时,涂层的熔深较小,涂层与基体的结合平整光滑。送粉率的增大使得涂层的形貌发生变化。基体中硫元素的含量决定了涂层表面张力温度系数,改变了熔池中马兰戈尼对流方向,并最终影响涂层的成分和组织。 |
其他语种文摘
|
The laser cladding of CoCrW powder on 38MnVS6 steel substrate is conducted,and the effects of active elements in substrate on the morphology and microstructure of laser cladding layer are investigated.The results show that,when the powder feeding rate is 5.60 g·min~(-1) and the scanning speed is smaller than 5 mm·s~(-1),the melt pool of cladding layer is relatively deep and the fusion line of cladding layer and substrate is concave downwards.When the scanning speed is higher than 6 mm·s~(-1),the melt pool is relatively shallow and the fusion line is smooth.The increase of the powder feeding rate makes the change of cladding layer morphology.The sulfur content in substrate determines the temperature coefficient of surface tension,which changes the direction of Maragoni convection and thus influences the final compositions and microstructures of cladding layers. |
来源
|
中国激光
,2018,45(6):0602005-1-0602005-6 【核心库】
|
DOI
|
10.3788/CJL201845.0602005
|
关键词
|
激光技术
;
激光熔覆
;
活性元素
;
形貌
;
显微组织
|
地址
|
1.
中国科学院力学研究所, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
美国西北大学机械工程系, 美国, 埃文斯顿, 60208
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6268739
|
参考文献 共
21
共2页
|
1.
Kusinski J. Laser modification of the materials surface layer-A review paper.
Bulletin of the Polish Academy of Sciences,2012,60(4):711-728
|
CSCD被引
19
次
|
|
|
|
2.
Zhao G L. Research on in situ synthesised (Ti,V)C/Fe composite coating by laser cladding.
Materials Science and Technology,2014,31(11):1329-1334
|
CSCD被引
2
次
|
|
|
|
3.
段晓溪. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究.
中国激光,2016,43(1):0103004
|
CSCD被引
18
次
|
|
|
|
4.
Lee Y S. Influence of fluid convection on weld pool formation in laser cladding.
Welding Journal,2014,93:292-300
|
CSCD被引
6
次
|
|
|
|
5.
Xu Y L. Marangoni convection and weld shape variation in A-TIG welding process.
Theoretical and Applied Fracture Mechanics,2007,48(2):178-186
|
CSCD被引
13
次
|
|
|
|
6.
Dai D H. Tailored reinforcement/matrix interface and thermodynamic mechanism during selective laser melting composites.
Materials Science and Technology,2016,32(7):617-628
|
CSCD被引
2
次
|
|
|
|
7.
Yu J J. Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient.
Experimental Thermal and Fluid Science,2015,61:79-86
|
CSCD被引
6
次
|
|
|
|
8.
He X L. Solute transport and composition profile during direct metal deposition with coaxial powder injection.
Applied Surface Science,2011,258(2):898-907
|
CSCD被引
5
次
|
|
|
|
9.
彭进. 激光填丝焊对熔池动态行为及焊缝成形的影响.
中国激光,2017,44(11):1102004
|
CSCD被引
9
次
|
|
|
|
10.
Gan Z T. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron.
International Journal of Heat and Mass Transfer,2017,111:709-722
|
CSCD被引
16
次
|
|
|
|
11.
Sahoo P. Surface-tension of binary metal-surface-active solute systems under conditions relevant to welding metallurgy.
Metallurgical Transactions B,1988,19(3):483-491
|
CSCD被引
54
次
|
|
|
|
12.
Lu S P. Sensitivity of Marangoni convection and weld shape variations to welding parameters in O_2-Ar shielded GTA welding.
Scripta Materialia,2004,51(3):271-277
|
CSCD被引
11
次
|
|
|
|
13.
Mills K C. Marangoni effects in welding.
Philosophical Transactions of the Royal Society A,1998,356(1739):911-925
|
CSCD被引
6
次
|
|
|
|
14.
Lienert T J. Weld bead center line shift during laser welding of austenitic stainless steels with different sulfur content.
Scripta Materialia,2014,71:37-40
|
CSCD被引
1
次
|
|
|
|
15.
Zhang S. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying.
Surface & Coatings Technology,2015,262:64-69
|
CSCD被引
19
次
|
|
|
|
16.
Gan Z T. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel.
International Journal of Heat and Mass Transfer,2017,104:28-38
|
CSCD被引
23
次
|
|
|
|
17.
Kumar A. Effect of three-dimensional melt pool convection on process characteristics during laser cladding.
Computational Materials Science,2009,46(2):495-506
|
CSCD被引
16
次
|
|
|
|
18.
Abderrazak K. Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy.
Computational Materials Science,2009,44(3):858-866
|
CSCD被引
10
次
|
|
|
|
19.
夏胜全. 激光深熔焊熔池三维瞬态行为数值模拟.
中国激光,2016,43(11):1102004
|
CSCD被引
4
次
|
|
|
|
20.
Nogi K. The temperature-coefficient of the surface-tension of pure liquid-metals.
Metallurgical Transactions B,1986,17(1):163-170
|
CSCD被引
4
次
|
|
|
|
|