基于网络空间点模式的餐饮店空间格局分析
Analysis on Spatial Distribution Characteristics of Restaurant Based on Network Spatial Point Model
查看参考文献27篇
文摘
|
餐饮业是城市经济发展的重要指标,运用合适的方法来研究城市餐饮业的空间格局特征,对城市规划、商业选址和经济发展等具有重要意义。本文以广州市海珠区为例,基于餐饮店POI(兴趣点)数据,利用核密度估计法分析餐饮店的空间分布特性,采用网络核密度法探究其热点路段的分布情况,并利用网络双变量K函数法,分析餐饮店分布与公交站和居民小区的相关性。结果表明:海珠区餐饮店总体分布呈现"西密东疏"的空间格局,具有多中心的空间分布特征;江南中街道餐饮店分布的热点路段主要集中在江南西路和江南大道中沿线,其密度随着与该沿线的距离增加而衰减;在较小范围内,餐饮店的分布与公交站具有显著的聚集关系,而与居民小区不具有显著的聚集关系。对于沿道路分布的空间地理点对象,利用网络空间点模式分析可得到较好结果。 |
其他语种文摘
|
The catering industry has been considered as one of the most important indicators concerning economic development of a city. Using appropriate methods to study catering industry has been playing an important part in research fields such as city planning, business location and economic development. Many restaurants in a city can be abstracted as point objects in the study of geography. It is one of the most commonly used methods to study the spatial layout of facility events by using spatial point patterns. The traditional point pattern analysis methods are basically based on the Euclidean distance and assume that the plane space is a homogeneous and isotropic space. However, many geo-objects are usually distributed on the road network or along the road network, such as restaurants, banks, supermarkets and road traffic accidents. If the traditional method of plane space point analysis is applied to the trend events occurring along the road network, wrong aggregation mode may occur. By using the network spatial point pattern analysis method, the shortest path distance instead of the Euclidean distance can be used to study the distribution characteristics of the event points, and more accurate spatial analysis results can be obtained. Take Haizhu District of Guangzhou city as an example, on the basis of restaurants POI (point of interest) data, Kernel density estimation is adopted to analyze spatial distribution characteristics of restaurants. The network kernel density method is used to investigate the distribution characteristics of the hot roads, and double variable K function method is applied to analyze the relations between distribution of restaurants and bus stations and residential areas. The spatial pattern of Haizhu District restaurants shows much more dense in the West and comparatively sparser in the East. The restaurant hot spots are mainly concentrated along the streets of Jiangnan West and Jiangnan Zhong, and the density of the restaurants decreases with the increase of the distance from the hot spots. The degree of aggregation of restaurants, bus stations and residential areas is also investigated under the road network structure. The results show that restaurants have strong aggregation relations with bus stations, which indicates that the restaurant tends to close to the traffic stations, but have no significant aggregation relationship with the residential areas. As far as the spatial point objects along streets are concerned, better results can be obtained by using network analysis of spatial point pattern. |
来源
|
地球信息科学学报
,2018,20(6):837-843 【核心库】
|
DOI
|
10.12082/dqxxkx.2018.170596
|
关键词
|
网络空间点模式
;
K函数
;
核密度
;
空间格局
;
餐饮店
|
地址
|
广州大学地理科学学院, 广州, 510006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
社会科学总论;测绘学 |
基金
|
国家自然科学基金
;
广东省高等学校国际暨港澳台科技合作创新平台项目
|
文献收藏号
|
CSCD:6258649
|
参考文献 共
27
共2页
|
1.
Diggle P J.
Statistical analysis of spatial point pattern,1983
|
CSCD被引
3
次
|
|
|
|
2.
郭仁忠.
空间分析,2000
|
CSCD被引
29
次
|
|
|
|
3.
Bailey T.
Interactive spatial data analysis,1995
|
CSCD被引
2
次
|
|
|
|
4.
Lotwick H W. Methods for analysing spatial processes of several types of points.
Journal of the Royal Statistical Society,1982,44(3):406-413
|
CSCD被引
14
次
|
|
|
|
5.
张珣. 2004-2008年北京城区商业网点空间分布与集聚特征.
地理科学进展,2013,32(8):1207-1215
|
CSCD被引
51
次
|
|
|
|
6.
王士君. 长春市大型商业网点的区位特征及其影响因素.
地理学报,2015,70(6):893-905
|
CSCD被引
37
次
|
|
|
|
7.
Lu Y M. On the false alarm of planar K-function when analyzing urban crime distributed distributed along streets.
Social Science Research,2007,36(2):611-632
|
CSCD被引
11
次
|
|
|
|
8.
Xie Z. Kernel density estimation of traffic accidents in a network space.
Computers Environment & Urban Systems,2008,32(5):396-406
|
CSCD被引
57
次
|
|
|
|
9.
Xie Z. Detecting traffic accident clusters with network kernel density estimation and local spatial statistics:an integrated approach.
Journal of Transport Geography,2013,31(5):64-71
|
CSCD被引
9
次
|
|
|
|
10.
禹文豪. 核密度估计法支持下的网络空间POI点可视化与分析.
测绘学报,2015,44(1):82-90
|
CSCD被引
99
次
|
|
|
|
11.
郑滋椀.
基于道路网络的犯罪时空分布特征与可视化研究,2016
|
CSCD被引
2
次
|
|
|
|
12.
Yamada I. Local indicators of network-constrained clusters in spatial point patterns.
Geographical Analysis,2007,39(3):268-292
|
CSCD被引
17
次
|
|
|
|
13.
Okabe A. The K-function method on a network and its computational implementation.
Geographical Analysis,2001,33(3):271-290
|
CSCD被引
19
次
|
|
|
|
14.
Okabe A. SANET: A toolbox for spatial analysis on a network.
Geographical Analysis,2006,38(1):57-66
|
CSCD被引
16
次
|
|
|
|
15.
Sugihara K. Computational method for the point cluster analysis on networks.
Geoinformatica,2011,15(1):167-189
|
CSCD被引
2
次
|
|
|
|
16.
Garrocho-Rangel C. Calculating intraurban agglomeration of economic units with planar and network K-functions: A comparative analysis.
Urban Geography,2013,34(2):261-286
|
CSCD被引
3
次
|
|
|
|
17.
杨珏婕. 基于网络K函数的西双版纳人工林空间格局及动态.
生态学报,2011,31(22):6734-6742
|
CSCD被引
4
次
|
|
|
|
18.
邬伦. 基于网络K函数法的地理对象分布模式分析——以香港岛餐饮业空间格局为例.
地理与地理信息科学,2013,29(5):7-11
|
CSCD被引
10
次
|
|
|
|
19.
王结臣. 基于Ripley's K函数的南京市ATM网点空间分布模式研究.
地理科学,2016,36(12):1843-1849
|
CSCD被引
17
次
|
|
|
|
20.
广州市海珠区年鉴编纂委员会.
海珠年鉴,2016
|
CSCD被引
1
次
|
|
|
|
|